Narrow your search

Library

FARO (1)

KU Leuven (1)

LUCA School of Arts (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UCLL (1)

ULB (1)

ULiège (1)

VIVES (1)

More...

Resource type

book (3)


Language

English (3)


Year
From To Submit

2022 (3)

Listing 1 - 3 of 3
Sort by

Book
Marine Nitrogen Fixation and Phytoplankton Ecology
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Many oceans are currently undergoing rapid changes in environmental conditions such as warming temperature, acidic water condition, coastal hypoxia, etc. These changes could lead to dramatic changes in the biology and ecology of phytoplankton and consequently impact the entire marine ecosystems and global biogeochemical cycles. Marine phytoplankton can be an important indicator for the changes in marine environments and ecosystems since they are major primary producers that consolidate solar energy into various organic matter transferred to marine ecosystems throughout the food-webs. Similarly, the N2 fixers (diazotrophs) are also vulnerable to changing environmental conditions. It has been found that the polar regions can be introduced to diazotrophic activity under warming conditions and the increased N availability can lead to elevated primary productivity. Considering the fundamental roles of phytoplankton in marine ecosystems and global biogeochemical cycles, it is important to understand phytoplankton ecology and N2 fixation as a potential N source in various oceans. This Special Issue provides ecological and biogeochemical baselines in a wide range of geographic study regions for the changes in marine environments and ecosystems driven by global climate changes.


Book
Marine Nitrogen Fixation and Phytoplankton Ecology
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Many oceans are currently undergoing rapid changes in environmental conditions such as warming temperature, acidic water condition, coastal hypoxia, etc. These changes could lead to dramatic changes in the biology and ecology of phytoplankton and consequently impact the entire marine ecosystems and global biogeochemical cycles. Marine phytoplankton can be an important indicator for the changes in marine environments and ecosystems since they are major primary producers that consolidate solar energy into various organic matter transferred to marine ecosystems throughout the food-webs. Similarly, the N2 fixers (diazotrophs) are also vulnerable to changing environmental conditions. It has been found that the polar regions can be introduced to diazotrophic activity under warming conditions and the increased N availability can lead to elevated primary productivity. Considering the fundamental roles of phytoplankton in marine ecosystems and global biogeochemical cycles, it is important to understand phytoplankton ecology and N2 fixation as a potential N source in various oceans. This Special Issue provides ecological and biogeochemical baselines in a wide range of geographic study regions for the changes in marine environments and ecosystems driven by global climate changes.


Book
Marine Nitrogen Fixation and Phytoplankton Ecology
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Many oceans are currently undergoing rapid changes in environmental conditions such as warming temperature, acidic water condition, coastal hypoxia, etc. These changes could lead to dramatic changes in the biology and ecology of phytoplankton and consequently impact the entire marine ecosystems and global biogeochemical cycles. Marine phytoplankton can be an important indicator for the changes in marine environments and ecosystems since they are major primary producers that consolidate solar energy into various organic matter transferred to marine ecosystems throughout the food-webs. Similarly, the N2 fixers (diazotrophs) are also vulnerable to changing environmental conditions. It has been found that the polar regions can be introduced to diazotrophic activity under warming conditions and the increased N availability can lead to elevated primary productivity. Considering the fundamental roles of phytoplankton in marine ecosystems and global biogeochemical cycles, it is important to understand phytoplankton ecology and N2 fixation as a potential N source in various oceans. This Special Issue provides ecological and biogeochemical baselines in a wide range of geographic study regions for the changes in marine environments and ecosystems driven by global climate changes.

Keywords

Research & information: general --- Environmental economics --- TEP --- TEP-C --- phytoplankton --- chlorophyll a --- POC --- primary production --- Jaran Bay --- particulate organic matter --- biochemical composition --- Chukchi Sea --- Arctic Ocean --- East China Sea --- HPLC --- diatoms --- cyanobacteria --- phytoplankton productivity --- carbon and nitrogen --- stable isotopes --- Kongsfjorden --- Svalbard --- biochemical compositions --- carbohydrates --- proteins --- lipids --- Scrippsiella trochoidea --- Heterosigma akashiwo --- biovolume --- chlorophyll-a --- particulate organic nitrogen --- particulate organic carbon --- South China Sea --- upwelling --- eddy --- diatom --- Trichodesmium --- Rhizosolenia-Richelia --- Prochlorococcus --- Synechococcus --- northwestern Pacific Ocean --- macromolecular composition --- transparent exopolymer particles --- Ross Sea --- polar night --- macromolecules --- Chukchi Shelf --- Canada Basin --- food material --- Bering Sea --- small phytoplankton --- primary productivity --- TEP --- TEP-C --- phytoplankton --- chlorophyll a --- POC --- primary production --- Jaran Bay --- particulate organic matter --- biochemical composition --- Chukchi Sea --- Arctic Ocean --- East China Sea --- HPLC --- diatoms --- cyanobacteria --- phytoplankton productivity --- carbon and nitrogen --- stable isotopes --- Kongsfjorden --- Svalbard --- biochemical compositions --- carbohydrates --- proteins --- lipids --- Scrippsiella trochoidea --- Heterosigma akashiwo --- biovolume --- chlorophyll-a --- particulate organic nitrogen --- particulate organic carbon --- South China Sea --- upwelling --- eddy --- diatom --- Trichodesmium --- Rhizosolenia-Richelia --- Prochlorococcus --- Synechococcus --- northwestern Pacific Ocean --- macromolecular composition --- transparent exopolymer particles --- Ross Sea --- polar night --- macromolecules --- Chukchi Shelf --- Canada Basin --- food material --- Bering Sea --- small phytoplankton --- primary productivity

Listing 1 - 3 of 3
Sort by