Narrow your search
Listing 1 - 10 of 13 << page
of 2
>>
Sort by

Book
Error probabilities for maximum likelihood detection of M-ary Poisson processes in Poisson noise
Authors: --- --- ---
Year: 1968 Publisher: Washington, D.C. : National Aeronautics and Space Administration,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
A dual potential formulation of the Navier-Stokes equations
Authors: --- --- --- ---
Year: 1989 Publisher: [Ames, Iowa ] : Moffett Field, California : Heat Transfer Laboratory, Engineering Research Institute, Iowa State University ; NASA-Ames Research Center,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Numerical method and FORTRAN program for the solution of an axisymmetric electrostatic collector design problem
Authors: --- ---
Year: 1972 Publisher: Washington, D.C. : National Aeronautics and Space,


Book
Elements of Partial Differential Equations
Authors: ---
ISBN: 3110374048 3110316676 311031665X 9783110316650 9783110316674 9783110374049 Year: 2014 Publisher: Berlin Boston

Loading...
Export citation

Choose an application

Bookmark

Abstract

This textbook is an elementary introduction to the basic principles of partial differential equations. With many illustrations it introduces PDEs on an elementary level, enabling the reader to understand what partial differential equations are, where they come from and how they can be solved. The intention is that the reader understands the basic principles which are valid for particular types of PDEs, and to acquire some classical methods to solve them, thus the authors restrict their considerations to fundamental types of equations and basic methods. Only basic facts from calculus and linear ordinary differential equations of first and second order are needed as a prerequisite. The book is addressed to students who intend to specialize in mathematics as well as to students of physics, engineering, and economics.


Book
Many Body Quantum Chaos
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The field of chaos in many-body quantum systems has a long history, going back to Wigner’s simple models for heavy nuclei. Quantum chaos is being investigated in a broad variety of experimental platforms such as heavy nuclei, driven (few-electron) atoms, ultracold quantum gases, and photonic or microwave realizations. Quantum chaos plays a new and important role in many branches of physics, from condensed matter problems of many-body localization, including thermalization studies in closed and open quantum systems, and the question of dynamical stability relevant for quantum information and quantum simulation. This Special Issue and its related book address theories and experiments, methods from classical chaos, semiclassics, and random matrix theory, as well as many-body condensed matter physics. It is dedicated to Prof. Shmuel Fishman, who was one of the major representatives of the field over almost four decades, who passed away in 2019.

Keywords

Research & information: general --- quantum chaos --- decoherence --- Arnol’d cat --- classical limit --- correspondence principle --- cold atoms --- interacting fermions --- thermalization --- dynamical chaos --- Sinai oscillator --- quantum tunneling --- dissipation --- effective action --- quantum transport --- nonlinear Schrödinger equation --- Gross-Pitaevskii equation --- Schrödinger-Poisson equation --- Bose-Einstein condensate --- dark matter --- periodically kicked system --- Lorentzian potential --- topological horseshoe --- uniformly hyperbolicity --- sector condition --- fractal Weyl law --- survival probability --- correlation functions --- semiclassical approximation --- revival dynamics --- Morse oscillator --- atom-optics kicked rotor --- quantum resonance --- continuous-time quantum walks --- Bose–Einstein condensates --- quantum interference --- Aubry-André model --- correlation hole --- fluctuation theorems --- nonequilibrium statistical mechanics --- quantum thermodynamics --- phase transitions --- Dirac bosons --- mean field analysis --- adiabatic separation --- trapped ions --- Frenkel–Kontorova --- long–range interactions --- sine-Gordon kink --- quantum kicked rotor --- Anderson localisation --- dynamical localisation --- quantum chaos --- decoherence --- Arnol’d cat --- classical limit --- correspondence principle --- cold atoms --- interacting fermions --- thermalization --- dynamical chaos --- Sinai oscillator --- quantum tunneling --- dissipation --- effective action --- quantum transport --- nonlinear Schrödinger equation --- Gross-Pitaevskii equation --- Schrödinger-Poisson equation --- Bose-Einstein condensate --- dark matter --- periodically kicked system --- Lorentzian potential --- topological horseshoe --- uniformly hyperbolicity --- sector condition --- fractal Weyl law --- survival probability --- correlation functions --- semiclassical approximation --- revival dynamics --- Morse oscillator --- atom-optics kicked rotor --- quantum resonance --- continuous-time quantum walks --- Bose–Einstein condensates --- quantum interference --- Aubry-André model --- correlation hole --- fluctuation theorems --- nonequilibrium statistical mechanics --- quantum thermodynamics --- phase transitions --- Dirac bosons --- mean field analysis --- adiabatic separation --- trapped ions --- Frenkel–Kontorova --- long–range interactions --- sine-Gordon kink --- quantum kicked rotor --- Anderson localisation --- dynamical localisation


Book
Statistical Fluid Dynamics
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Modeling micrometric and nanometric suspensions remains a major issue. They help to model the mechanical, thermal, and electrical properties, among others, of the suspensions, and then of the resulting product, in a controlled way, when considered in material formation. In some cases, they can help to improve the energy transport performance. The optimal use of these products is based on an accurate prediction of the flow-induced properties of the suspensions and, consequently, of the resulting products and parts. The final properties of the resulting micro-structured fluid or solid are radically different from the simple mixing rule. In this book, we found numerous works addressing the description of these specific fluid behaviors.

Keywords

Technology: general issues --- History of engineering & technology --- Materials science --- graphene nano-powder --- thermal nanofluid --- rheological behavior --- Carreau nanofluid --- lubrication effect --- Vallejo law --- liquid-liquid interface --- shear rate --- nanoparticles --- diffuse interface --- phase field method --- molecular dynamics --- numerical simulation --- octree optimization --- microstructure generation --- domain reconstruction --- flow simulation --- permeability computing --- data-driven model --- model order reduction --- proper orthogonal decomposition --- manifold learning --- diffuse approximation --- microcapsule suspension --- Hausdorff distance --- topological data analysis (TDA) --- reinforced polymers --- concentrated suspensions --- flow induced orientation --- discrete numerical simulation --- steam generator --- void fraction --- mixture model --- porous media approach --- reduced-order model --- Proper Orthogonal Decomposition (POD) --- energy dissipation --- interval-pooled stepped spillway --- omega identification method --- Navier-Stokes equation --- singularity --- transitional flow --- turbulence --- Poisson equation --- nanoparticle two-phase flow --- particle coagulation and breakage --- flow around circular cylinders --- particle distribution --- graphene nano-powder --- thermal nanofluid --- rheological behavior --- Carreau nanofluid --- lubrication effect --- Vallejo law --- liquid-liquid interface --- shear rate --- nanoparticles --- diffuse interface --- phase field method --- molecular dynamics --- numerical simulation --- octree optimization --- microstructure generation --- domain reconstruction --- flow simulation --- permeability computing --- data-driven model --- model order reduction --- proper orthogonal decomposition --- manifold learning --- diffuse approximation --- microcapsule suspension --- Hausdorff distance --- topological data analysis (TDA) --- reinforced polymers --- concentrated suspensions --- flow induced orientation --- discrete numerical simulation --- steam generator --- void fraction --- mixture model --- porous media approach --- reduced-order model --- Proper Orthogonal Decomposition (POD) --- energy dissipation --- interval-pooled stepped spillway --- omega identification method --- Navier-Stokes equation --- singularity --- transitional flow --- turbulence --- Poisson equation --- nanoparticle two-phase flow --- particle coagulation and breakage --- flow around circular cylinders --- particle distribution


Book
Statistical Fluid Dynamics
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Modeling micrometric and nanometric suspensions remains a major issue. They help to model the mechanical, thermal, and electrical properties, among others, of the suspensions, and then of the resulting product, in a controlled way, when considered in material formation. In some cases, they can help to improve the energy transport performance. The optimal use of these products is based on an accurate prediction of the flow-induced properties of the suspensions and, consequently, of the resulting products and parts. The final properties of the resulting micro-structured fluid or solid are radically different from the simple mixing rule. In this book, we found numerous works addressing the description of these specific fluid behaviors.


Book
Many Body Quantum Chaos
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The field of chaos in many-body quantum systems has a long history, going back to Wigner’s simple models for heavy nuclei. Quantum chaos is being investigated in a broad variety of experimental platforms such as heavy nuclei, driven (few-electron) atoms, ultracold quantum gases, and photonic or microwave realizations. Quantum chaos plays a new and important role in many branches of physics, from condensed matter problems of many-body localization, including thermalization studies in closed and open quantum systems, and the question of dynamical stability relevant for quantum information and quantum simulation. This Special Issue and its related book address theories and experiments, methods from classical chaos, semiclassics, and random matrix theory, as well as many-body condensed matter physics. It is dedicated to Prof. Shmuel Fishman, who was one of the major representatives of the field over almost four decades, who passed away in 2019.


Book
Many Body Quantum Chaos
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The field of chaos in many-body quantum systems has a long history, going back to Wigner’s simple models for heavy nuclei. Quantum chaos is being investigated in a broad variety of experimental platforms such as heavy nuclei, driven (few-electron) atoms, ultracold quantum gases, and photonic or microwave realizations. Quantum chaos plays a new and important role in many branches of physics, from condensed matter problems of many-body localization, including thermalization studies in closed and open quantum systems, and the question of dynamical stability relevant for quantum information and quantum simulation. This Special Issue and its related book address theories and experiments, methods from classical chaos, semiclassics, and random matrix theory, as well as many-body condensed matter physics. It is dedicated to Prof. Shmuel Fishman, who was one of the major representatives of the field over almost four decades, who passed away in 2019.


Book
Statistical Fluid Dynamics
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Modeling micrometric and nanometric suspensions remains a major issue. They help to model the mechanical, thermal, and electrical properties, among others, of the suspensions, and then of the resulting product, in a controlled way, when considered in material formation. In some cases, they can help to improve the energy transport performance. The optimal use of these products is based on an accurate prediction of the flow-induced properties of the suspensions and, consequently, of the resulting products and parts. The final properties of the resulting micro-structured fluid or solid are radically different from the simple mixing rule. In this book, we found numerous works addressing the description of these specific fluid behaviors.

Listing 1 - 10 of 13 << page
of 2
>>
Sort by