Narrow your search

Library

FARO (3)

KU Leuven (3)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

ULB (3)

ULiège (3)

VIVES (3)

More...

Resource type

book (7)


Language

English (7)


Year
From To Submit

2022 (3)

2020 (3)

2019 (1)

Listing 1 - 7 of 7
Sort by

Book
Polymer Materials in Biomedical Application
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Recently, the development of polymeric materials for biomedical applications has advanced significantly. Polymeric materials are favored in the development of therapeutic devices, including temporary implants and three-dimensional scaffolds for tissue engineering and in vitro disease modelling.Further advancements have also occurred in the utilization of polymeric materials for pharmacological applications, such as delivery vehicles for drug release.We would like to invite you to contribute to this Special Issue. Research topics of interest include, but are not limited to, recent advances related to 3D cell culture, biomaterials, tissue engineering, disease modelling, hydrogel, organoids, drug discovery, bioimaging, cardio-renal, metabolic disease, and stem cell biology.

Keywords

Medicine --- Pharmaceutical industries --- hydrogels --- crosslinking --- degradable --- gamma (γ)-irradiation --- sterilization --- sterility assurance --- antibacterial ability --- jojoba --- Simmondsia --- chemistry --- liquid wax --- biology --- toxicity --- pharmaceutical/industrial uses --- articular cartilage --- mechanical properties --- tribological properties --- antibacterial --- pathogens --- infectious diseases --- silver nanoparticles --- wound care --- wound dressings --- polymers --- gelatin --- nanofibers --- sponges --- Ag/RGO nanocomposites --- green preparation --- anticancer performance --- potential mechanism --- oxidative stress --- hydrogel --- poloxamer 407 polymer --- poloxamer 407 gel --- transungual drug delivery --- onychomycosis --- ungual penetration enhancer --- Terbinafine --- diafiltration --- SAXS --- aromatic interactions --- poly(sodium 4-styrenesulfonate) --- chlorpheniramine --- polyelectrolyte --- aggregation --- coaxial electrospinning --- extracellular matrix --- myelination --- oligodendrocyte --- water-soluble materials --- orthokeratology lens --- protein deposition --- optical characteristics --- rubbing --- chitosan --- kenaf --- nanocrystalline cellulose --- platelet lysate --- wound healing --- carbohydrate polymers blends --- functional food --- antioxidant activity --- co-microencapsulation --- spray drying --- bacteria viability (Bacillus clausii) --- probiotics --- itraconazole --- self-emulsifying nanovesicles --- transungual --- anti-fungal --- hydrogels --- crosslinking --- degradable --- gamma (γ)-irradiation --- sterilization --- sterility assurance --- antibacterial ability --- jojoba --- Simmondsia --- chemistry --- liquid wax --- biology --- toxicity --- pharmaceutical/industrial uses --- articular cartilage --- mechanical properties --- tribological properties --- antibacterial --- pathogens --- infectious diseases --- silver nanoparticles --- wound care --- wound dressings --- polymers --- gelatin --- nanofibers --- sponges --- Ag/RGO nanocomposites --- green preparation --- anticancer performance --- potential mechanism --- oxidative stress --- hydrogel --- poloxamer 407 polymer --- poloxamer 407 gel --- transungual drug delivery --- onychomycosis --- ungual penetration enhancer --- Terbinafine --- diafiltration --- SAXS --- aromatic interactions --- poly(sodium 4-styrenesulfonate) --- chlorpheniramine --- polyelectrolyte --- aggregation --- coaxial electrospinning --- extracellular matrix --- myelination --- oligodendrocyte --- water-soluble materials --- orthokeratology lens --- protein deposition --- optical characteristics --- rubbing --- chitosan --- kenaf --- nanocrystalline cellulose --- platelet lysate --- wound healing --- carbohydrate polymers blends --- functional food --- antioxidant activity --- co-microencapsulation --- spray drying --- bacteria viability (Bacillus clausii) --- probiotics --- itraconazole --- self-emulsifying nanovesicles --- transungual --- anti-fungal


Book
Stem Cell and Biologic Scaffold Engineering
Author:
ISBN: 3039214985 3039214977 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Tissue engineering and regenerative medicine is a rapidly evolving research field which effectively combines stem cells and biologic scaffolds in order to replace damaged tissues. Biologic scaffolds can be produced through the removal of resident cellular populations using several tissue engineering approaches, such as the decellularization method. Indeed, the decellularization method aims to develop a cell-free biologic scaffold while keeping the extracellular matrix (ECM) intact. Furthermore, biologic scaffolds have been investigated for their in vitro potential for whole organ development. Currently, clinical products composed of decellularized matrices, such as pericardium, urinary bladder, small intestine, heart valves, nerve conduits, trachea, and vessels, are being evaluated for use in human clinical trials. Tissue engineering strategies require the interaction of biologic scaffolds with cellular populations. Among them, stem cells are characterized by unlimited cell division, self-renewal, and differentiation potential, distinguishing themselves as a frontline source for the repopulation of decellularized matrices and scaffolds. Under this scheme, stem cells can be isolated from patients, expanded under good manufacturing practices (GMPs), used for the repopulation of biologic scaffolds and, finally, returned to the patient. The interaction between scaffolds and stem cells is thought to be crucial for their infiltration, adhesion, and differentiation into specific cell types. In addition, biomedical devices such as bioreactors contribute to the uniform repopulation of scaffolds. Until now, remarkable efforts have been made by the scientific society in order to establish the proper repopulation conditions of decellularized matrices and scaffolds. However, parameters such as stem cell number, in vitro cultivation conditions, and specific growth media composition need further evaluation. The ultimate goal is the development of “artificial” tissues similar to native ones, which is achieved by properly combining stem cells and biologic scaffolds and thus bringing them one step closer to personalized medicine. The original research articles and comprehensive reviews in this Special Issue deal with the use of stem cells and biologic scaffolds that utilize state-of-the-art tissue engineering and regenerative medicine approaches.


Book
Polymer Materials in Biomedical Application
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Recently, the development of polymeric materials for biomedical applications has advanced significantly. Polymeric materials are favored in the development of therapeutic devices, including temporary implants and three-dimensional scaffolds for tissue engineering and in vitro disease modelling.Further advancements have also occurred in the utilization of polymeric materials for pharmacological applications, such as delivery vehicles for drug release.We would like to invite you to contribute to this Special Issue. Research topics of interest include, but are not limited to, recent advances related to 3D cell culture, biomaterials, tissue engineering, disease modelling, hydrogel, organoids, drug discovery, bioimaging, cardio-renal, metabolic disease, and stem cell biology.

Keywords

Medicine --- Pharmaceutical industries --- hydrogels --- crosslinking --- degradable --- gamma (γ)-irradiation --- sterilization --- sterility assurance --- antibacterial ability --- jojoba --- Simmondsia --- chemistry --- liquid wax --- biology --- toxicity --- pharmaceutical/industrial uses --- articular cartilage --- mechanical properties --- tribological properties --- antibacterial --- pathogens --- infectious diseases --- silver nanoparticles --- wound care --- wound dressings --- polymers --- gelatin --- nanofibers --- sponges --- Ag/RGO nanocomposites --- green preparation --- anticancer performance --- potential mechanism --- oxidative stress --- hydrogel --- poloxamer 407 polymer --- poloxamer 407 gel --- transungual drug delivery --- onychomycosis --- ungual penetration enhancer --- Terbinafine --- diafiltration --- SAXS --- aromatic interactions --- poly(sodium 4-styrenesulfonate) --- chlorpheniramine --- polyelectrolyte --- aggregation --- coaxial electrospinning --- extracellular matrix --- myelination --- oligodendrocyte --- water-soluble materials --- orthokeratology lens --- protein deposition --- optical characteristics --- rubbing --- chitosan --- kenaf --- nanocrystalline cellulose --- platelet lysate --- wound healing --- carbohydrate polymers blends --- functional food --- antioxidant activity --- co-microencapsulation --- spray drying --- bacteria viability (Bacillus clausii) --- probiotics --- itraconazole --- self-emulsifying nanovesicles --- transungual --- anti-fungal


Book
Polymer Materials in Biomedical Application
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Recently, the development of polymeric materials for biomedical applications has advanced significantly. Polymeric materials are favored in the development of therapeutic devices, including temporary implants and three-dimensional scaffolds for tissue engineering and in vitro disease modelling.Further advancements have also occurred in the utilization of polymeric materials for pharmacological applications, such as delivery vehicles for drug release.We would like to invite you to contribute to this Special Issue. Research topics of interest include, but are not limited to, recent advances related to 3D cell culture, biomaterials, tissue engineering, disease modelling, hydrogel, organoids, drug discovery, bioimaging, cardio-renal, metabolic disease, and stem cell biology.


Book
Adipose-Derived Stromal/Stem Cells
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Adipose tissue is a rich, ubiquitous, and easily accessible source for multipotent mesenchymal stromal/stem cells (MSCs), so-called adipose-derived stromal/stem cells (ASCs). Primary isolated ASCs are a heterogeneous preparation consisting of several subpopulations of stromal/stem and precursor cells. Donor-specific differences in ASC isolations and the lack of culture standardization hinder the comparison of results from different studies. Nevertheless, ASCs are already being used in different in vivo models and clinical trials to investigate their ability to improve tissue and organ regeneration. Many questions concerning their counterparts and biology in situ, their differentiation potential in vitro and in vivo, and the mechanisms of regeneration (paracrine effects, including regeneration-promoting factors and extracellular vesicles, differentiation, and immunomodulation) are not completely understood or remain unanswered. This Special Issue covers research articles investigating various adipose tissues as a source for ASC isolation, specific cultures methods to enhance proliferation or viability, and the differentiation capacity. Furthermore, other studies highlight aspects of various diseases, the immunosuppressive potential of ASCs and their derivates, or the in vivo tracking of transplanted ASCs. This edition is complemented by a review that summarizes the current knowledge of spheroid culture system methods and applications for mesenchymal stem cells.

Keywords

Medicine --- lipomas --- adipose tissue --- stem cells --- adipogenesis --- osteogenesis --- mesenchymal stem cells --- T-cells --- conditioned medium --- extracellular vesicles --- TLR --- INF-γ --- adipose-derived stromal cells --- equine metabolic syndrome --- metformin --- adipose-derived stem cells --- adipocytes --- differentiation --- collagen I --- adiponectin --- integrins --- discoidin domain-containing receptor --- ageing --- subcutaneous fat --- adipose tissue-derived mesenchymal stromal/stem cells (ASCs) --- cell differentiation --- volatile organic compounds --- metabolic monitoring --- adipose-derived stromal/stem cells --- chondrogenesis --- colony forming unit-fibroblast --- fetal bovine serum --- human platelet lysate --- mesenchymal stem cell --- regenerative medicine --- human adipose-derived stem cells --- stem cell proliferation --- signaling pathway --- adipose-derived mesenchymal stem cells --- migration --- secretion --- primary cilium --- sonic hedgehog signaling --- mesenchymal stromal/stem cells --- perirenal --- fat --- characterization --- stimulation --- lipopolysaccharide --- cytokines --- cytomegalovirus --- angiogenesis --- adipose derived mesenchymal cells --- Histogel --- 3D cell culture --- spheroid culture --- biomaterials --- phenotype --- secretory potential --- ankylosing spondylitis --- systemic lupus erythematosus --- systemic sclerosis --- mesenchymal stromal cells --- breast cancer --- tumor microenvironment --- perineural invasion --- adipose derived stem cells --- valproic acid --- protein interactions --- MAPK pathway --- JAK/STAT pathway --- mesenchymal stromal cell --- tissue of origin --- prolonged culture --- epigenetic memory --- tracking --- bio imaging --- bioluminescence --- qRT-PCR --- Ataxia telangiectasia --- Atm --- lipomas --- adipose tissue --- stem cells --- adipogenesis --- osteogenesis --- mesenchymal stem cells --- T-cells --- conditioned medium --- extracellular vesicles --- TLR --- INF-γ --- adipose-derived stromal cells --- equine metabolic syndrome --- metformin --- adipose-derived stem cells --- adipocytes --- differentiation --- collagen I --- adiponectin --- integrins --- discoidin domain-containing receptor --- ageing --- subcutaneous fat --- adipose tissue-derived mesenchymal stromal/stem cells (ASCs) --- cell differentiation --- volatile organic compounds --- metabolic monitoring --- adipose-derived stromal/stem cells --- chondrogenesis --- colony forming unit-fibroblast --- fetal bovine serum --- human platelet lysate --- mesenchymal stem cell --- regenerative medicine --- human adipose-derived stem cells --- stem cell proliferation --- signaling pathway --- adipose-derived mesenchymal stem cells --- migration --- secretion --- primary cilium --- sonic hedgehog signaling --- mesenchymal stromal/stem cells --- perirenal --- fat --- characterization --- stimulation --- lipopolysaccharide --- cytokines --- cytomegalovirus --- angiogenesis --- adipose derived mesenchymal cells --- Histogel --- 3D cell culture --- spheroid culture --- biomaterials --- phenotype --- secretory potential --- ankylosing spondylitis --- systemic lupus erythematosus --- systemic sclerosis --- mesenchymal stromal cells --- breast cancer --- tumor microenvironment --- perineural invasion --- adipose derived stem cells --- valproic acid --- protein interactions --- MAPK pathway --- JAK/STAT pathway --- mesenchymal stromal cell --- tissue of origin --- prolonged culture --- epigenetic memory --- tracking --- bio imaging --- bioluminescence --- qRT-PCR --- Ataxia telangiectasia --- Atm


Book
Adipose-Derived Stromal/Stem Cells
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Adipose tissue is a rich, ubiquitous, and easily accessible source for multipotent mesenchymal stromal/stem cells (MSCs), so-called adipose-derived stromal/stem cells (ASCs). Primary isolated ASCs are a heterogeneous preparation consisting of several subpopulations of stromal/stem and precursor cells. Donor-specific differences in ASC isolations and the lack of culture standardization hinder the comparison of results from different studies. Nevertheless, ASCs are already being used in different in vivo models and clinical trials to investigate their ability to improve tissue and organ regeneration. Many questions concerning their counterparts and biology in situ, their differentiation potential in vitro and in vivo, and the mechanisms of regeneration (paracrine effects, including regeneration-promoting factors and extracellular vesicles, differentiation, and immunomodulation) are not completely understood or remain unanswered. This Special Issue covers research articles investigating various adipose tissues as a source for ASC isolation, specific cultures methods to enhance proliferation or viability, and the differentiation capacity. Furthermore, other studies highlight aspects of various diseases, the immunosuppressive potential of ASCs and their derivates, or the in vivo tracking of transplanted ASCs. This edition is complemented by a review that summarizes the current knowledge of spheroid culture system methods and applications for mesenchymal stem cells.

Keywords

Medicine --- lipomas --- adipose tissue --- stem cells --- adipogenesis --- osteogenesis --- mesenchymal stem cells --- T-cells --- conditioned medium --- extracellular vesicles --- TLR --- INF-γ --- adipose-derived stromal cells --- equine metabolic syndrome --- metformin --- adipose-derived stem cells --- adipocytes --- differentiation --- collagen I --- adiponectin --- integrins --- discoidin domain-containing receptor --- ageing --- subcutaneous fat --- adipose tissue-derived mesenchymal stromal/stem cells (ASCs) --- cell differentiation --- volatile organic compounds --- metabolic monitoring --- adipose-derived stromal/stem cells --- chondrogenesis --- colony forming unit-fibroblast --- fetal bovine serum --- human platelet lysate --- mesenchymal stem cell --- regenerative medicine --- human adipose-derived stem cells --- stem cell proliferation --- signaling pathway --- adipose-derived mesenchymal stem cells --- migration --- secretion --- primary cilium --- sonic hedgehog signaling --- mesenchymal stromal/stem cells --- perirenal --- fat --- characterization --- stimulation --- lipopolysaccharide --- cytokines --- cytomegalovirus --- angiogenesis --- adipose derived mesenchymal cells --- Histogel --- 3D cell culture --- spheroid culture --- biomaterials --- phenotype --- secretory potential --- ankylosing spondylitis --- systemic lupus erythematosus --- systemic sclerosis --- mesenchymal stromal cells --- breast cancer --- tumor microenvironment --- perineural invasion --- adipose derived stem cells --- valproic acid --- protein interactions --- MAPK pathway --- JAK/STAT pathway --- mesenchymal stromal cell --- tissue of origin --- prolonged culture --- epigenetic memory --- tracking --- bio imaging --- bioluminescence --- qRT-PCR --- Ataxia telangiectasia --- Atm --- n/a


Book
Adipose-Derived Stromal/Stem Cells
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Adipose tissue is a rich, ubiquitous, and easily accessible source for multipotent mesenchymal stromal/stem cells (MSCs), so-called adipose-derived stromal/stem cells (ASCs). Primary isolated ASCs are a heterogeneous preparation consisting of several subpopulations of stromal/stem and precursor cells. Donor-specific differences in ASC isolations and the lack of culture standardization hinder the comparison of results from different studies. Nevertheless, ASCs are already being used in different in vivo models and clinical trials to investigate their ability to improve tissue and organ regeneration. Many questions concerning their counterparts and biology in situ, their differentiation potential in vitro and in vivo, and the mechanisms of regeneration (paracrine effects, including regeneration-promoting factors and extracellular vesicles, differentiation, and immunomodulation) are not completely understood or remain unanswered. This Special Issue covers research articles investigating various adipose tissues as a source for ASC isolation, specific cultures methods to enhance proliferation or viability, and the differentiation capacity. Furthermore, other studies highlight aspects of various diseases, the immunosuppressive potential of ASCs and their derivates, or the in vivo tracking of transplanted ASCs. This edition is complemented by a review that summarizes the current knowledge of spheroid culture system methods and applications for mesenchymal stem cells.

Keywords

lipomas --- adipose tissue --- stem cells --- adipogenesis --- osteogenesis --- mesenchymal stem cells --- T-cells --- conditioned medium --- extracellular vesicles --- TLR --- INF-γ --- adipose-derived stromal cells --- equine metabolic syndrome --- metformin --- adipose-derived stem cells --- adipocytes --- differentiation --- collagen I --- adiponectin --- integrins --- discoidin domain-containing receptor --- ageing --- subcutaneous fat --- adipose tissue-derived mesenchymal stromal/stem cells (ASCs) --- cell differentiation --- volatile organic compounds --- metabolic monitoring --- adipose-derived stromal/stem cells --- chondrogenesis --- colony forming unit-fibroblast --- fetal bovine serum --- human platelet lysate --- mesenchymal stem cell --- regenerative medicine --- human adipose-derived stem cells --- stem cell proliferation --- signaling pathway --- adipose-derived mesenchymal stem cells --- migration --- secretion --- primary cilium --- sonic hedgehog signaling --- mesenchymal stromal/stem cells --- perirenal --- fat --- characterization --- stimulation --- lipopolysaccharide --- cytokines --- cytomegalovirus --- angiogenesis --- adipose derived mesenchymal cells --- Histogel --- 3D cell culture --- spheroid culture --- biomaterials --- phenotype --- secretory potential --- ankylosing spondylitis --- systemic lupus erythematosus --- systemic sclerosis --- mesenchymal stromal cells --- breast cancer --- tumor microenvironment --- perineural invasion --- adipose derived stem cells --- valproic acid --- protein interactions --- MAPK pathway --- JAK/STAT pathway --- mesenchymal stromal cell --- tissue of origin --- prolonged culture --- epigenetic memory --- tracking --- bio imaging --- bioluminescence --- qRT-PCR --- Ataxia telangiectasia --- Atm --- n/a

Listing 1 - 7 of 7
Sort by