Listing 1 - 5 of 5 |
Sort by
|
Choose an application
Plasmonics and metamaterials are growing fields that consistently produce new technologies for controlling electromagnetic waves. Many important advances in both fundamental knowledge and practical applications have been achieved in conjunction with a wide range of materials, structures and wavelengths, from the ultraviolet to the microwave regions of the spectrum. In addition to this remarkable progress across many different fields, much of this research shares many of the same underlying principles, and therefore, significant synergy is expected. This Special Issue introduces the recent advances in plasmonics and metamaterials and discusses various applications, while addressing a wide range of topics, in order to explore the new horizons emerging for such research.
Research & information: general --- plasmonics --- metamaterials --- metal-insulator-metal --- absorbers --- plasmon-induced transparency --- metal-dielectric-metal --- gain material --- tunable fano resonances --- surface plasmon polaritons --- coupled cavities --- finite element method --- spectroscopes --- metamaterial --- structural color filters --- photodiodes --- vortex beam --- polarization conversion --- orbital angular momentum --- tensegrity lattice --- extreme material --- metagratings --- polarization controller --- multifunction --- wide-angle --- dual mode --- cross-polarization converter --- transmitarray --- high polarization conversion ratio --- uncooled --- IR sensors --- wavelength-selective --- metasurfaces --- polarization control --- infrared sensors --- plasmonics --- metamaterials --- metal-insulator-metal --- absorbers --- plasmon-induced transparency --- metal-dielectric-metal --- gain material --- tunable fano resonances --- surface plasmon polaritons --- coupled cavities --- finite element method --- spectroscopes --- metamaterial --- structural color filters --- photodiodes --- vortex beam --- polarization conversion --- orbital angular momentum --- tensegrity lattice --- extreme material --- metagratings --- polarization controller --- multifunction --- wide-angle --- dual mode --- cross-polarization converter --- transmitarray --- high polarization conversion ratio --- uncooled --- IR sensors --- wavelength-selective --- metasurfaces --- polarization control --- infrared sensors
Choose an application
Plasmonics and metamaterials are growing fields that consistently produce new technologies for controlling electromagnetic waves. Many important advances in both fundamental knowledge and practical applications have been achieved in conjunction with a wide range of materials, structures and wavelengths, from the ultraviolet to the microwave regions of the spectrum. In addition to this remarkable progress across many different fields, much of this research shares many of the same underlying principles, and therefore, significant synergy is expected. This Special Issue introduces the recent advances in plasmonics and metamaterials and discusses various applications, while addressing a wide range of topics, in order to explore the new horizons emerging for such research.
Research & information: general --- plasmonics --- metamaterials --- metal-insulator-metal --- absorbers --- plasmon-induced transparency --- metal-dielectric-metal --- gain material --- tunable fano resonances --- surface plasmon polaritons --- coupled cavities --- finite element method --- spectroscopes --- metamaterial --- structural color filters --- photodiodes --- vortex beam --- polarization conversion --- orbital angular momentum --- tensegrity lattice --- extreme material --- metagratings --- polarization controller --- multifunction --- wide-angle --- dual mode --- cross-polarization converter --- transmitarray --- high polarization conversion ratio --- uncooled --- IR sensors --- wavelength-selective --- metasurfaces --- polarization control --- infrared sensors
Choose an application
Plasmonics and metamaterials are growing fields that consistently produce new technologies for controlling electromagnetic waves. Many important advances in both fundamental knowledge and practical applications have been achieved in conjunction with a wide range of materials, structures and wavelengths, from the ultraviolet to the microwave regions of the spectrum. In addition to this remarkable progress across many different fields, much of this research shares many of the same underlying principles, and therefore, significant synergy is expected. This Special Issue introduces the recent advances in plasmonics and metamaterials and discusses various applications, while addressing a wide range of topics, in order to explore the new horizons emerging for such research.
plasmonics --- metamaterials --- metal-insulator-metal --- absorbers --- plasmon-induced transparency --- metal-dielectric-metal --- gain material --- tunable fano resonances --- surface plasmon polaritons --- coupled cavities --- finite element method --- spectroscopes --- metamaterial --- structural color filters --- photodiodes --- vortex beam --- polarization conversion --- orbital angular momentum --- tensegrity lattice --- extreme material --- metagratings --- polarization controller --- multifunction --- wide-angle --- dual mode --- cross-polarization converter --- transmitarray --- high polarization conversion ratio --- uncooled --- IR sensors --- wavelength-selective --- metasurfaces --- polarization control --- infrared sensors
Choose an application
This Special Issue focuses on computational detailed studies (simulation, modeling, and calculations) of the structures, main properties, and peculiarities of the various nanomaterials (nanocrystals, nanoparticles, nanolayers, nanofibers, nanotubes, etc.) based on various elements, including organic and biological components, such as amino acids and peptides. For many practical applications in nanoelectronics., such materials as ferroelectrics and ferromagnetics, having switching parameters (polarization, magnetization), are highly requested, and simulation of dynamics and kinetics of their switching are a very important task. An important task for these studies is computer modeling and computational research of the properties on the various composites of the other nanostructures with polymeric ferroelectrics and with different graphene-like 2-dimensional structures. A wide range of contemporary computational methods and software are used in all these studies.
single nanowires --- silicon --- dual shells --- off-resonance --- absorption --- photocurrent --- magnetism --- transition-metal oxide clusters --- DFT calculations --- structure --- electronic properties --- LGD theory --- polarization --- nanoscale ferroelectrics --- kinetics --- homogeneous switching --- computer simulation --- fitting --- diphenylalanine --- peptide nanotubes --- self-assembly --- water molecules --- DFT --- molecular modelling --- semi-empirical methods --- chirality --- Ir-modified MoS2 --- decomposition components of SF6 --- adsorption and sensing --- atomistic simulation --- core–shell bi-magnetic nanoparticles --- Monte Carlo simulation --- interfacial exchange --- terahertz --- graphene --- plasmons --- Drude absorption --- polarization conversion --- yield surface --- plastic flow --- crystal plasticity --- polycrystalline aluminum --- dipeptides --- helical structures --- molecular modeling --- dipole moments --- tunnel junction --- machine learning --- III-nitride --- hydroxyapatite --- modeling --- density functional theory --- defects --- vacancies --- substitutions --- structural and optical properties --- band gap --- electronic density of states --- nanomaterials --- plasmon-induced transparency --- strontium titanate --- slow light --- iron doping --- hydroxyapatite bioceramics --- hybrid density functional --- X-ray absorption spectroscopy --- phenylalanine --- protein secondary structure --- optoelectronic devices --- nanostructured polymer film --- antireflection coating --- finite-difference time-domain method --- ferroelectrics --- heterostructures --- domains --- negative capacitance
Choose an application
This Special Issue focuses on computational detailed studies (simulation, modeling, and calculations) of the structures, main properties, and peculiarities of the various nanomaterials (nanocrystals, nanoparticles, nanolayers, nanofibers, nanotubes, etc.) based on various elements, including organic and biological components, such as amino acids and peptides. For many practical applications in nanoelectronics., such materials as ferroelectrics and ferromagnetics, having switching parameters (polarization, magnetization), are highly requested, and simulation of dynamics and kinetics of their switching are a very important task. An important task for these studies is computer modeling and computational research of the properties on the various composites of the other nanostructures with polymeric ferroelectrics and with different graphene-like 2-dimensional structures. A wide range of contemporary computational methods and software are used in all these studies.
Research & information: general --- Physics --- single nanowires --- silicon --- dual shells --- off-resonance --- absorption --- photocurrent --- magnetism --- transition-metal oxide clusters --- DFT calculations --- structure --- electronic properties --- LGD theory --- polarization --- nanoscale ferroelectrics --- kinetics --- homogeneous switching --- computer simulation --- fitting --- diphenylalanine --- peptide nanotubes --- self-assembly --- water molecules --- DFT --- molecular modelling --- semi-empirical methods --- chirality --- Ir-modified MoS2 --- decomposition components of SF6 --- adsorption and sensing --- atomistic simulation --- core–shell bi-magnetic nanoparticles --- Monte Carlo simulation --- interfacial exchange --- terahertz --- graphene --- plasmons --- Drude absorption --- polarization conversion --- yield surface --- plastic flow --- crystal plasticity --- polycrystalline aluminum --- dipeptides --- helical structures --- molecular modeling --- dipole moments --- tunnel junction --- machine learning --- III-nitride --- hydroxyapatite --- modeling --- density functional theory --- defects --- vacancies --- substitutions --- structural and optical properties --- band gap --- electronic density of states --- nanomaterials --- plasmon-induced transparency --- strontium titanate --- slow light --- iron doping --- hydroxyapatite bioceramics --- hybrid density functional --- X-ray absorption spectroscopy --- phenylalanine --- protein secondary structure --- optoelectronic devices --- nanostructured polymer film --- antireflection coating --- finite-difference time-domain method --- ferroelectrics --- heterostructures --- domains --- negative capacitance --- single nanowires --- silicon --- dual shells --- off-resonance --- absorption --- photocurrent --- magnetism --- transition-metal oxide clusters --- DFT calculations --- structure --- electronic properties --- LGD theory --- polarization --- nanoscale ferroelectrics --- kinetics --- homogeneous switching --- computer simulation --- fitting --- diphenylalanine --- peptide nanotubes --- self-assembly --- water molecules --- DFT --- molecular modelling --- semi-empirical methods --- chirality --- Ir-modified MoS2 --- decomposition components of SF6 --- adsorption and sensing --- atomistic simulation --- core–shell bi-magnetic nanoparticles --- Monte Carlo simulation --- interfacial exchange --- terahertz --- graphene --- plasmons --- Drude absorption --- polarization conversion --- yield surface --- plastic flow --- crystal plasticity --- polycrystalline aluminum --- dipeptides --- helical structures --- molecular modeling --- dipole moments --- tunnel junction --- machine learning --- III-nitride --- hydroxyapatite --- modeling --- density functional theory --- defects --- vacancies --- substitutions --- structural and optical properties --- band gap --- electronic density of states --- nanomaterials --- plasmon-induced transparency --- strontium titanate --- slow light --- iron doping --- hydroxyapatite bioceramics --- hybrid density functional --- X-ray absorption spectroscopy --- phenylalanine --- protein secondary structure --- optoelectronic devices --- nanostructured polymer film --- antireflection coating --- finite-difference time-domain method --- ferroelectrics --- heterostructures --- domains --- negative capacitance
Listing 1 - 5 of 5 |
Sort by
|