Listing 1 - 10 of 24 | << page >> |
Sort by
|
Choose an application
Growing demographic trends require sustainable technologies to improve quality and yield of future food productions. However, there is uncertainty about plant protection strategies in many agro-ecosystems. Pests, diseases, and weeds are overwhelmingly controlled by chemicals which pose health risks and cause other undesirable effects.Therefore, an increasing concern on control measures emerged in recent years. Many chemicals became questioned with regard to their sustainability and are (or will be) banned. Alternative management tools are studied, relying on biological, and low impact solutions. This ResearchTopic concerns microbial biocontrol agents, root-associated microbiomes, and rhizosphere networks. Understanding how they interact or respond to (a)biotic environmental cues is instrumental for an effective and sustainable impact. The rhizosphere is in this regard a fundamental object of study, because of its role in plant productivity. This e-book provides a polyhedral perspective on many issues in which beneficial microorganisms are involved. Data indeed demonstrate that they represent an as yet poorly-explored resource, whose exploitation may actively sustain plant protection and crop production. Given the huge number of microbial species present on the planet, the microorganisms studied represent just the tip of an iceberg. Data produced are, however, informative enough about their genetic and functional biodiversity, as well as about the ecosystem services they provide to underp in crop production. Challenges for future research work concern not only the biology of these species, but also the practices required to protect their biodiversity and to extend their application in the wide range of agricultural soils and systems present in the world. Agriculture cannot remain successfully and sustainable unless plant germplasm and useful microbial species are integrated, a goal for which new knowledge and information-based approaches are urgently needed.Growing demographic trends require sustainable technologies to improve quality and yield of future food productions. However, there is uncertainty about plant protection strategies in many agro-ecosystems. Pests, diseases, and weeds are overwhelmingly controlled by chemicals which pose health risks and cause other undesirable effects.Therefore, an increasing concern on control measures emerged in recent years. Many chemicals became questioned with regard to their sustainability and are (or will be) banned. Alternative management tools are studied, relying on biological, and low impact solutions. This ResearchTopic concerns microbial biocontrol agents, root-associated microbiomes, and rhizosphere networks. Understanding how they interact or respond to (a)biotic environmental cues is instrumental for an effective and sustainable impact. The rhizosphere is in this regard a fundamental object of study, because of its role in plant productivity. This e-book provides a polyhedral perspective on many issues in which beneficial microorganisms are involved. Data indeed demonstrate that they represent an as yet poorly-explored resource, whose exploitation may actively sustain plant protection and crop production. Given the huge number of microbial species present on the planet, the microorganisms studied represent just the tip of an iceberg. Data produced are, however, informative enough about their genetic and functional biodiversity, as well as about the ecosystem services they provide to underp in crop production. Challenges for future research work concern not only the biology of these species, but also the practices required to protect their biodiversity and to extend their application in the wide range of agricultural soils and systems present in the world. Agriculture cannot remain successfully and sustainable unless plant germplasm and useful microbial species are integrated, a goal for which new knowledge and information-based approaches are urgently needed.
induced resistance --- omics --- Soil Microbiology --- Rhizosphere Microbiology --- endophyte --- symbosis --- biocontrol --- plant growth promotion --- Plant Microbe Interaction
Choose an application
This e-book summarizes recent advances in the young and rapidly developing field of microbial volatiles. Articles included here reveal novel information about the chemical diversity of bacterial and fungal volatiles, their functions, their roles in inter-specific and inter-kingdom interactions and the metabolic and physiological changes their exposure causes in the target organisms. The e-book is divided in three chapters: (1) Natural Functions of Microbial Volatiles; (2) Volatile Production and Ecosystem Functioning and (3) Volatile Detection and Identification.
microorganisms --- infochemicals --- natural functions --- induced systemic resistance --- Plants --- antimicrobials --- plant growth promotion --- volatiles --- interactions
Choose an application
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact
biocontrol --- induced resistance --- Fungi --- Management --- nematode --- plant growth promotion --- rhizosphere --- Plant-microbe interaction --- Soil --- virus
Choose an application
Growing demographic trends require sustainable technologies to improve quality and yield of future food productions. However, there is uncertainty about plant protection strategies in many agro-ecosystems. Pests, diseases, and weeds are overwhelmingly controlled by chemicals which pose health risks and cause other undesirable effects.Therefore, an increasing concern on control measures emerged in recent years. Many chemicals became questioned with regard to their sustainability and are (or will be) banned. Alternative management tools are studied, relying on biological, and low impact solutions. This ResearchTopic concerns microbial biocontrol agents, root-associated microbiomes, and rhizosphere networks. Understanding how they interact or respond to (a)biotic environmental cues is instrumental for an effective and sustainable impact. The rhizosphere is in this regard a fundamental object of study, because of its role in plant productivity. This e-book provides a polyhedral perspective on many issues in which beneficial microorganisms are involved. Data indeed demonstrate that they represent an as yet poorly-explored resource, whose exploitation may actively sustain plant protection and crop production. Given the huge number of microbial species present on the planet, the microorganisms studied represent just the tip of an iceberg. Data produced are, however, informative enough about their genetic and functional biodiversity, as well as about the ecosystem services they provide to underp in crop production. Challenges for future research work concern not only the biology of these species, but also the practices required to protect their biodiversity and to extend their application in the wide range of agricultural soils and systems present in the world. Agriculture cannot remain successfully and sustainable unless plant germplasm and useful microbial species are integrated, a goal for which new knowledge and information-based approaches are urgently needed.Growing demographic trends require sustainable technologies to improve quality and yield of future food productions. However, there is uncertainty about plant protection strategies in many agro-ecosystems. Pests, diseases, and weeds are overwhelmingly controlled by chemicals which pose health risks and cause other undesirable effects.Therefore, an increasing concern on control measures emerged in recent years. Many chemicals became questioned with regard to their sustainability and are (or will be) banned. Alternative management tools are studied, relying on biological, and low impact solutions. This ResearchTopic concerns microbial biocontrol agents, root-associated microbiomes, and rhizosphere networks. Understanding how they interact or respond to (a)biotic environmental cues is instrumental for an effective and sustainable impact. The rhizosphere is in this regard a fundamental object of study, because of its role in plant productivity. This e-book provides a polyhedral perspective on many issues in which beneficial microorganisms are involved. Data indeed demonstrate that they represent an as yet poorly-explored resource, whose exploitation may actively sustain plant protection and crop production. Given the huge number of microbial species present on the planet, the microorganisms studied represent just the tip of an iceberg. Data produced are, however, informative enough about their genetic and functional biodiversity, as well as about the ecosystem services they provide to underp in crop production. Challenges for future research work concern not only the biology of these species, but also the practices required to protect their biodiversity and to extend their application in the wide range of agricultural soils and systems present in the world. Agriculture cannot remain successfully and sustainable unless plant germplasm and useful microbial species are integrated, a goal for which new knowledge and information-based approaches are urgently needed.
induced resistance --- omics --- Soil Microbiology --- Rhizosphere Microbiology --- endophyte --- symbosis --- biocontrol --- plant growth promotion --- Plant Microbe Interaction
Choose an application
This e-book summarizes recent advances in the young and rapidly developing field of microbial volatiles. Articles included here reveal novel information about the chemical diversity of bacterial and fungal volatiles, their functions, their roles in inter-specific and inter-kingdom interactions and the metabolic and physiological changes their exposure causes in the target organisms. The e-book is divided in three chapters: (1) Natural Functions of Microbial Volatiles; (2) Volatile Production and Ecosystem Functioning and (3) Volatile Detection and Identification.
microorganisms --- infochemicals --- natural functions --- induced systemic resistance --- Plants --- antimicrobials --- plant growth promotion --- volatiles --- interactions
Choose an application
Growing demographic trends require sustainable technologies to improve quality and yield of future food productions. However, there is uncertainty about plant protection strategies in many agro-ecosystems. Pests, diseases, and weeds are overwhelmingly controlled by chemicals which pose health risks and cause other undesirable effects.Therefore, an increasing concern on control measures emerged in recent years. Many chemicals became questioned with regard to their sustainability and are (or will be) banned. Alternative management tools are studied, relying on biological, and low impact solutions. This ResearchTopic concerns microbial biocontrol agents, root-associated microbiomes, and rhizosphere networks. Understanding how they interact or respond to (a)biotic environmental cues is instrumental for an effective and sustainable impact. The rhizosphere is in this regard a fundamental object of study, because of its role in plant productivity. This e-book provides a polyhedral perspective on many issues in which beneficial microorganisms are involved. Data indeed demonstrate that they represent an as yet poorly-explored resource, whose exploitation may actively sustain plant protection and crop production. Given the huge number of microbial species present on the planet, the microorganisms studied represent just the tip of an iceberg. Data produced are, however, informative enough about their genetic and functional biodiversity, as well as about the ecosystem services they provide to underp in crop production. Challenges for future research work concern not only the biology of these species, but also the practices required to protect their biodiversity and to extend their application in the wide range of agricultural soils and systems present in the world. Agriculture cannot remain successfully and sustainable unless plant germplasm and useful microbial species are integrated, a goal for which new knowledge and information-based approaches are urgently needed.Growing demographic trends require sustainable technologies to improve quality and yield of future food productions. However, there is uncertainty about plant protection strategies in many agro-ecosystems. Pests, diseases, and weeds are overwhelmingly controlled by chemicals which pose health risks and cause other undesirable effects.Therefore, an increasing concern on control measures emerged in recent years. Many chemicals became questioned with regard to their sustainability and are (or will be) banned. Alternative management tools are studied, relying on biological, and low impact solutions. This ResearchTopic concerns microbial biocontrol agents, root-associated microbiomes, and rhizosphere networks. Understanding how they interact or respond to (a)biotic environmental cues is instrumental for an effective and sustainable impact. The rhizosphere is in this regard a fundamental object of study, because of its role in plant productivity. This e-book provides a polyhedral perspective on many issues in which beneficial microorganisms are involved. Data indeed demonstrate that they represent an as yet poorly-explored resource, whose exploitation may actively sustain plant protection and crop production. Given the huge number of microbial species present on the planet, the microorganisms studied represent just the tip of an iceberg. Data produced are, however, informative enough about their genetic and functional biodiversity, as well as about the ecosystem services they provide to underp in crop production. Challenges for future research work concern not only the biology of these species, but also the practices required to protect their biodiversity and to extend their application in the wide range of agricultural soils and systems present in the world. Agriculture cannot remain successfully and sustainable unless plant germplasm and useful microbial species are integrated, a goal for which new knowledge and information-based approaches are urgently needed.
induced resistance --- omics --- Soil Microbiology --- Rhizosphere Microbiology --- endophyte --- symbosis --- biocontrol --- plant growth promotion --- Plant Microbe Interaction
Choose an application
This e-book summarizes recent advances in the young and rapidly developing field of microbial volatiles. Articles included here reveal novel information about the chemical diversity of bacterial and fungal volatiles, their functions, their roles in inter-specific and inter-kingdom interactions and the metabolic and physiological changes their exposure causes in the target organisms. The e-book is divided in three chapters: (1) Natural Functions of Microbial Volatiles; (2) Volatile Production and Ecosystem Functioning and (3) Volatile Detection and Identification.
microorganisms --- infochemicals --- natural functions --- induced systemic resistance --- Plants --- antimicrobials --- plant growth promotion --- volatiles --- interactions
Choose an application
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact
Science: general issues --- Medical microbiology & virology --- Microbiology (non-medical) --- biocontrol --- induced resistance --- Fungi --- Management --- nematode --- plant growth promotion --- rhizosphere --- Plant-microbe interaction --- Soil --- virus
Choose an application
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact
Science: general issues --- Medical microbiology & virology --- Microbiology (non-medical) --- biocontrol --- induced resistance --- Fungi --- Management --- nematode --- plant growth promotion --- rhizosphere --- Plant-microbe interaction --- Soil --- virus
Choose an application
In the past few decades, awareness of the basic role that endophytic fungi play in shaping the fitness of both wild and crop plants has increased significantly. The number of papers on the subject is so large that it is becoming difficult to have a complete overview of the state-of-the-art with reference to specific crops. In the absence of readily available documents providing circumstantial information on the endophytic assemblage of plants, the isolation of a certain fungal species may appear to be occasional or trivial; hence, many important findings are at risk of going unnoticed. This Special Issue aims to present a collection of papers dealing with the occurrence and functions of endophytic fungi in crop species. It may represent a useful tool for stakeholders in this particular research field, with a view to stimulating a more thorough consideration of the opportunities deriving from their discoveries.
Research & information: general --- endophytic fungi --- Fusarium --- species complexes --- mycotoxins --- fusaric acid --- trichothecenes --- biosynthetic gene clusters --- Citrus spp. --- endophytes --- antagonism --- defensive mutualism --- plant growth promotion --- bioactive compounds --- entomopathogens --- crop protection --- integrated pest management --- Cordycipitaceae --- Alternaria --- Illumina MiSeq --- secondary raw materials --- compositae --- fungi --- herbs --- secondary metabolites --- symbiosis --- mutualism --- plant fitness --- latent pathogens --- Botryosphaeria rhodina --- Botryodiplodia theobromae --- onions --- amaryllis --- endosphere --- endobiome --- metabolome --- sage --- bioprospecting --- medicinal plants --- Lamiaceae --- biocontrol --- biostimulants --- induced systemic resistance --- ISR --- plant pathogens --- fungal entomopathogens --- Acacia --- Albizia --- Bauhinia --- Berberis --- Caesalpinia --- Cassia --- Cornus --- Hamamelis --- Jasminus --- Ligustrum --- Lonicera --- Nerium --- Robinia --- EFSA --- high-risk plants --- n/a
Listing 1 - 10 of 24 | << page >> |
Sort by
|