Narrow your search
Listing 1 - 8 of 8
Sort by

Book
Engineering the Plant Factory for the Production of Biologics and Small-Molecule Medicines
Authors: --- --- --- ---
Year: 2017 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Plant gene transfer achieved in the early ‘80s paved the way for the exploitation of the potential of gene engineering to add novel agronomic traits and/or to design plants as factories for high added value molecules. For this latter area of research, the term "Molecular Farming" was coined in reference to agricultural applications in that major crops like maize and tobacco were originally used basically for pharma applications. The concept of the “green biofactory” implies different advantages over the typical cell factories based on animal cell or microbial cultures already when considering the investment and managing costs of fermenters. Although yield, stability, and quality of the molecules may vary among different heterologous systems and plants are competitive on a case-to-case basis, still the “plant factory” attracts scientists and technologists for the challenging features of low production cost, product safety and easy scale up. Once engineered, a plant is among the cheapest and easiest eukaryotic system to be bred with simple know-how, using nutrients, water and light. Molecules that are currently being produced in plants vary from industrial and pharmaceutical proteins, including medical diagnostics proteins and vaccine antigens, to nutritional supplements such as vitamins, carbohydrates and biopolymers. Convergence among disciplines as distant as plant physiology and pharmacology and, more recently, as omic sciences, bioinformatics and nanotechnology, increases the options of research on the plant cell factory. “Farming for Pharming” biologics and small-molecule medicines is a challenging area of plant biotechnology that may break the limits of current standard production technologies. The recent success on Ebola fighting with plant-made antibodies put a spotlight on the enormous potential of next generation herbal medicines made especially in the name of the guiding principle of reduction of costs, hence reduction of disparities of health rights and as a tool to guarantee adequate health protection in developing countries.Plant gene transfer achieved in the early ‘80s paved the way for the exploitation of the potential of gene engineering to add novel agronomic traits and/or to design plants as factories for high added value molecules. For this latter area of research, the term "Molecular Farming" was coined in reference to agricultural applications in that major crops like maize and tobacco were originally used basically for pharma applications. The concept of the “green biofactory” implies different advantages over the typical cell factories based on animal cell or microbial cultures already when considering the investment and managing costs of fermenters. Although yield, stability, and quality of the molecules may vary among different heterologous systems and plants are competitive on a case-to-case basis, still the “plant factory” attracts scientists and technologists for the challenging features of low production cost, product safety and easy scale up. Once engineered, a plant is among the cheapest and easiest eukaryotic system to be bred with simple know-how, using nutrients, water and light. Molecules that are currently being produced in plants vary from industrial and pharmaceutical proteins, including medical diagnostics proteins and vaccine antigens, to nutritional supplements such as vitamins, carbohydrates and biopolymers. Convergence among disciplines as distant as plant physiology and pharmacology and, more recently, as omic sciences, bioinformatics and nanotechnology, increases the options of research on the plant cell factory. “Farming for Pharming” biologics and small-molecule medicines is a challenging area of plant biotechnology that may break the limits of current standard production technologies. The recent success on Ebola fighting with plant-made antibodies put a spotlight on the enormous potential of next generation herbal medicines made especially in the name of the guiding principle of reduction of costs, hence reduction of disparities of health rights and as a tool to guarantee adequate health protection in developing countries.


Book
Engineering the Plant Factory for the Production of Biologics and Small-Molecule Medicines
Authors: --- --- --- ---
Year: 2017 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Plant gene transfer achieved in the early ‘80s paved the way for the exploitation of the potential of gene engineering to add novel agronomic traits and/or to design plants as factories for high added value molecules. For this latter area of research, the term "Molecular Farming" was coined in reference to agricultural applications in that major crops like maize and tobacco were originally used basically for pharma applications. The concept of the “green biofactory” implies different advantages over the typical cell factories based on animal cell or microbial cultures already when considering the investment and managing costs of fermenters. Although yield, stability, and quality of the molecules may vary among different heterologous systems and plants are competitive on a case-to-case basis, still the “plant factory” attracts scientists and technologists for the challenging features of low production cost, product safety and easy scale up. Once engineered, a plant is among the cheapest and easiest eukaryotic system to be bred with simple know-how, using nutrients, water and light. Molecules that are currently being produced in plants vary from industrial and pharmaceutical proteins, including medical diagnostics proteins and vaccine antigens, to nutritional supplements such as vitamins, carbohydrates and biopolymers. Convergence among disciplines as distant as plant physiology and pharmacology and, more recently, as omic sciences, bioinformatics and nanotechnology, increases the options of research on the plant cell factory. “Farming for Pharming” biologics and small-molecule medicines is a challenging area of plant biotechnology that may break the limits of current standard production technologies. The recent success on Ebola fighting with plant-made antibodies put a spotlight on the enormous potential of next generation herbal medicines made especially in the name of the guiding principle of reduction of costs, hence reduction of disparities of health rights and as a tool to guarantee adequate health protection in developing countries.Plant gene transfer achieved in the early ‘80s paved the way for the exploitation of the potential of gene engineering to add novel agronomic traits and/or to design plants as factories for high added value molecules. For this latter area of research, the term "Molecular Farming" was coined in reference to agricultural applications in that major crops like maize and tobacco were originally used basically for pharma applications. The concept of the “green biofactory” implies different advantages over the typical cell factories based on animal cell or microbial cultures already when considering the investment and managing costs of fermenters. Although yield, stability, and quality of the molecules may vary among different heterologous systems and plants are competitive on a case-to-case basis, still the “plant factory” attracts scientists and technologists for the challenging features of low production cost, product safety and easy scale up. Once engineered, a plant is among the cheapest and easiest eukaryotic system to be bred with simple know-how, using nutrients, water and light. Molecules that are currently being produced in plants vary from industrial and pharmaceutical proteins, including medical diagnostics proteins and vaccine antigens, to nutritional supplements such as vitamins, carbohydrates and biopolymers. Convergence among disciplines as distant as plant physiology and pharmacology and, more recently, as omic sciences, bioinformatics and nanotechnology, increases the options of research on the plant cell factory. “Farming for Pharming” biologics and small-molecule medicines is a challenging area of plant biotechnology that may break the limits of current standard production technologies. The recent success on Ebola fighting with plant-made antibodies put a spotlight on the enormous potential of next generation herbal medicines made especially in the name of the guiding principle of reduction of costs, hence reduction of disparities of health rights and as a tool to guarantee adequate health protection in developing countries.


Book
Engineering the Plant Factory for the Production of Biologics and Small-Molecule Medicines
Authors: --- --- --- ---
Year: 2017 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Plant gene transfer achieved in the early ‘80s paved the way for the exploitation of the potential of gene engineering to add novel agronomic traits and/or to design plants as factories for high added value molecules. For this latter area of research, the term "Molecular Farming" was coined in reference to agricultural applications in that major crops like maize and tobacco were originally used basically for pharma applications. The concept of the “green biofactory” implies different advantages over the typical cell factories based on animal cell or microbial cultures already when considering the investment and managing costs of fermenters. Although yield, stability, and quality of the molecules may vary among different heterologous systems and plants are competitive on a case-to-case basis, still the “plant factory” attracts scientists and technologists for the challenging features of low production cost, product safety and easy scale up. Once engineered, a plant is among the cheapest and easiest eukaryotic system to be bred with simple know-how, using nutrients, water and light. Molecules that are currently being produced in plants vary from industrial and pharmaceutical proteins, including medical diagnostics proteins and vaccine antigens, to nutritional supplements such as vitamins, carbohydrates and biopolymers. Convergence among disciplines as distant as plant physiology and pharmacology and, more recently, as omic sciences, bioinformatics and nanotechnology, increases the options of research on the plant cell factory. “Farming for Pharming” biologics and small-molecule medicines is a challenging area of plant biotechnology that may break the limits of current standard production technologies. The recent success on Ebola fighting with plant-made antibodies put a spotlight on the enormous potential of next generation herbal medicines made especially in the name of the guiding principle of reduction of costs, hence reduction of disparities of health rights and as a tool to guarantee adequate health protection in developing countries.Plant gene transfer achieved in the early ‘80s paved the way for the exploitation of the potential of gene engineering to add novel agronomic traits and/or to design plants as factories for high added value molecules. For this latter area of research, the term "Molecular Farming" was coined in reference to agricultural applications in that major crops like maize and tobacco were originally used basically for pharma applications. The concept of the “green biofactory” implies different advantages over the typical cell factories based on animal cell or microbial cultures already when considering the investment and managing costs of fermenters. Although yield, stability, and quality of the molecules may vary among different heterologous systems and plants are competitive on a case-to-case basis, still the “plant factory” attracts scientists and technologists for the challenging features of low production cost, product safety and easy scale up. Once engineered, a plant is among the cheapest and easiest eukaryotic system to be bred with simple know-how, using nutrients, water and light. Molecules that are currently being produced in plants vary from industrial and pharmaceutical proteins, including medical diagnostics proteins and vaccine antigens, to nutritional supplements such as vitamins, carbohydrates and biopolymers. Convergence among disciplines as distant as plant physiology and pharmacology and, more recently, as omic sciences, bioinformatics and nanotechnology, increases the options of research on the plant cell factory. “Farming for Pharming” biologics and small-molecule medicines is a challenging area of plant biotechnology that may break the limits of current standard production technologies. The recent success on Ebola fighting with plant-made antibodies put a spotlight on the enormous potential of next generation herbal medicines made especially in the name of the guiding principle of reduction of costs, hence reduction of disparities of health rights and as a tool to guarantee adequate health protection in developing countries.


Dissertation
Master thesis : Redesigning the automation and intelligence platform for indoor growing systems
Authors: --- --- --- ---
Year: 2022 Publisher: Liège Université de Liège (ULiège)

Loading...
Export citation

Choose an application

Bookmark

Abstract

Agricultural techniques have always evolved by embracing the industry changes that took part according to the human technological evolution. Nowadays, Industry 4.0 represents the fourth industrial revolution leading to Agriculture 4.0. This last evolution is mainly defined by the fusion of many emerging technologies such as the Internet of things, advanced electronics and robotics, big data, and artificial intelligence. The new Agriculture 4.0 ecosystem is thus characterized by real-time farm management, a high degree of automation, and data-driven intelligent decision-making. The emerging smart plant factory concept is the real world realization of this new agricultural paradigm. This work proposes a new automation and intelligence platform that is defined as a basic hardware pattern and software structure upon which information and communication systems that serve as a base for various services are built. This platform has the objective of accommodating most functions needed by these state of the art farms. More precisely, the main target is to organize the communications and roles of each implemented module. To do so, a proof of concept of the monitoring hardware and a minimum viable product of the control software are implemented. Moreover, this project was tested with real world cultivation experiments thanks to a custom made cultivation tray. By having a multisectoral approach and by studying the modularity of the systems, the conducted development were shown to improve upon the currently available solutions regarding the technical documentation, edge and cloud computing compatibility, and hardware and software flexibility.


Dissertation
Etude technico-économique d'une usine à plante
Authors: --- --- --- ---
Year: 2020 Publisher: Liège Université de Liège (ULiège)

Loading...
Export citation

Choose an application

Bookmark

Abstract

Depuis plusieurs décennies, la population mondiale connaît une forte augmentation. Les prévisions annoncent que celle-ci s’élèvera à près de 10 milliards en 2050 et que la majorité vivra en ville. De plus, des changements climatiques importants ont lieu ainsi qu’une raréfaction de certaines ressources, comme l’eau et les terres agricoles. Ces changements ont un impact sur l’agriculture et il est important d’innover dans ce domaine afin de répondre aux besoins alimentaires futurs et de réduire l’impact environnemental de l’agriculture. Une des solutions qui est au cœur de ce travail sont les usines à plantes. 
Les usines à plantes sont des systèmes de culture en intérieur où les conditions environnementales sont hautement contrôlées. Elles ne sont pas dépendantes de la surface au sol ni des conditions climatiques. Elles peuvent donc être installées dans des milieux impropres aux autres techniques agricoles tels que les toitures ou les zones urbaines. Elles permettent également d’assurer une production durant toute de l’année et en optimisant l’utilisation de l’eau et des engrais.
Une expérience et un modèle sont utilisés conjointement afin de réaliser une étude technico-économique d’une culture de laitues en usine à plantes. L’objectif poursuivi est de fournir un outil d’aide à la décision et de déterminer les avantages que présentent les usines à plantes. Plusieurs paramètres environnementaux ainsi que le poids des laitues ont été mesurés tout au long de l’expérience. Ces mesures ont permis de mettre en place un modèle de prévision de croissance fiable. Les résultats obtenus montrent que la production dans de tels systèmes peut être rentable si la gestion est raisonnée et si les meilleures conditions de culture ainsi que les dernières technologies sont réunies. Comme les technologies liées aux usines à plantes sont en pleine évolution, une amélioration de la rentabilité de ces systèmes est à prévoir. For several decades, the world population has known an important increase. Forecasts say that it will rise to nearly 10 billion in 2050 and that the majority will live in cities. In addition, significant climate changes are taking place as well as a rarefaction of some resources, such as water and agricultural land. These changes are having an impact on agriculture and it is important to innovate in this area in order to meet future food needs and reduce the environmental impact of agriculture. One of the solutions that is at the heart of this work are plant factories.
Plant factories are indoor growing systems where environmental conditions are highly controlled. They are not dependent on the floor area or weather conditions. They can therefore be set up in environments unsuitable for other agricultural techniques such as roofs or urban areas. They also ensure a year-round production and an optimize use of water and fertilizers.
An experiment and a model are used together to carry out a techno-economic study of lettuce cultivation in a plant factory. The objective is to provide a decision support tool and to determine the advantages of plant factories. Several environmental parameters as well as the weight of the lettuce were measured throughout the experiment. These measures made it possible to build a reliable growth model. The results obtained show that production in such systems can be profitable if the management is well done and if the bests growing conditions and technologies are met. As the technologies related to plant factories are evolving, an improvement in the profitability of these systems is to be expected.


Book
Industry 4.0 for SMEs - Smart Manufacturing and Logistics for SMEs
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In recent years, the industrial environment has been changing radically due to the introduction of concepts and technologies based on the fourth industrial revolution, also known as Industry 4.0. After the introduction of Industry 4.0 in large enterprises, SMEs have moved into the focus, as they are the backbone of many economies. Small organizations are increasingly proactive in improving their operational processes, which is a good starting point for introducing the new concepts of Industry 4.0. The readiness of SME-adapted Industry 4.0 concepts and the organizational capability of SMEs to meet this challenge exist only in some areas. This reveals the need for further research and action plans for preparing SMEs in a technical and organizational direction. Therefore, special research and investigations are needed for the implementation of Industry 4.0 technologies and concepts in SMEs. SMEs will only achieve Industry 4.0 by following SME-customized implementation strategies and approaches and realizing SME-adapted concepts and technological solutions. Thus, this Special Issue represents a collection of theoretical models as well as practical case studies related to the introduction of Industry 4.0 concepts in small- and medium-sized enterprises.

Keywords

History of engineering & technology --- latent semantic analysis --- virtual quality management --- concept investigation --- concept disambiguation --- knowledge discovery --- sustainable methodologies --- small and medium sized enterprises --- material handling systems --- simulation --- ARENA®, time study --- overall equipment effectiveness --- manufacturing performance --- Industry 4.0 --- manufacturing sustainability --- manufacturing process model --- business process management --- hierarchical clustering --- similarity --- BPMN --- human factors --- cyber-physical systems --- cyber-physical production systems --- anthropocentric design --- Operator 4.0 --- human–machine interaction --- energy efficient operation --- manufacturing system --- stochastic event --- digital twin --- Max-plus Algebra --- MATLAB-Simulink --- advanced manufacturing --- industry 4.0 --- SME --- technology adoption model --- assembly supply chain --- sustainability --- complexity indicators --- testing criteria --- SMEs --- e-business modelling --- LSP Lifecycle Model --- Quality Function Deployment --- Best-Worst Method --- Internet of Things --- India --- awareness --- small and medium-sized enterprises --- assessment model --- collaborative robotics --- physical ergonomics --- human-robot collaboration --- human-centered design --- assembly --- small and medium sized enterprise --- positive complexity --- negative complexity --- infeasible configurations --- product platform --- customer’s perception --- assessment --- field study --- smart manufacturing --- cloud platform --- artificial intelligence --- machine learning --- deep learning --- smart logistics --- logistics 4.0 --- smart technologies --- sustainable agriculture --- plant factory


Book
Industry 4.0 for SMEs - Smart Manufacturing and Logistics for SMEs
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In recent years, the industrial environment has been changing radically due to the introduction of concepts and technologies based on the fourth industrial revolution, also known as Industry 4.0. After the introduction of Industry 4.0 in large enterprises, SMEs have moved into the focus, as they are the backbone of many economies. Small organizations are increasingly proactive in improving their operational processes, which is a good starting point for introducing the new concepts of Industry 4.0. The readiness of SME-adapted Industry 4.0 concepts and the organizational capability of SMEs to meet this challenge exist only in some areas. This reveals the need for further research and action plans for preparing SMEs in a technical and organizational direction. Therefore, special research and investigations are needed for the implementation of Industry 4.0 technologies and concepts in SMEs. SMEs will only achieve Industry 4.0 by following SME-customized implementation strategies and approaches and realizing SME-adapted concepts and technological solutions. Thus, this Special Issue represents a collection of theoretical models as well as practical case studies related to the introduction of Industry 4.0 concepts in small- and medium-sized enterprises.

Keywords

latent semantic analysis --- virtual quality management --- concept investigation --- concept disambiguation --- knowledge discovery --- sustainable methodologies --- small and medium sized enterprises --- material handling systems --- simulation --- ARENA®, time study --- overall equipment effectiveness --- manufacturing performance --- Industry 4.0 --- manufacturing sustainability --- manufacturing process model --- business process management --- hierarchical clustering --- similarity --- BPMN --- human factors --- cyber-physical systems --- cyber-physical production systems --- anthropocentric design --- Operator 4.0 --- human–machine interaction --- energy efficient operation --- manufacturing system --- stochastic event --- digital twin --- Max-plus Algebra --- MATLAB-Simulink --- advanced manufacturing --- industry 4.0 --- SME --- technology adoption model --- assembly supply chain --- sustainability --- complexity indicators --- testing criteria --- SMEs --- e-business modelling --- LSP Lifecycle Model --- Quality Function Deployment --- Best-Worst Method --- Internet of Things --- India --- awareness --- small and medium-sized enterprises --- assessment model --- collaborative robotics --- physical ergonomics --- human-robot collaboration --- human-centered design --- assembly --- small and medium sized enterprise --- positive complexity --- negative complexity --- infeasible configurations --- product platform --- customer’s perception --- assessment --- field study --- smart manufacturing --- cloud platform --- artificial intelligence --- machine learning --- deep learning --- smart logistics --- logistics 4.0 --- smart technologies --- sustainable agriculture --- plant factory


Book
Industry 4.0 for SMEs - Smart Manufacturing and Logistics for SMEs
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In recent years, the industrial environment has been changing radically due to the introduction of concepts and technologies based on the fourth industrial revolution, also known as Industry 4.0. After the introduction of Industry 4.0 in large enterprises, SMEs have moved into the focus, as they are the backbone of many economies. Small organizations are increasingly proactive in improving their operational processes, which is a good starting point for introducing the new concepts of Industry 4.0. The readiness of SME-adapted Industry 4.0 concepts and the organizational capability of SMEs to meet this challenge exist only in some areas. This reveals the need for further research and action plans for preparing SMEs in a technical and organizational direction. Therefore, special research and investigations are needed for the implementation of Industry 4.0 technologies and concepts in SMEs. SMEs will only achieve Industry 4.0 by following SME-customized implementation strategies and approaches and realizing SME-adapted concepts and technological solutions. Thus, this Special Issue represents a collection of theoretical models as well as practical case studies related to the introduction of Industry 4.0 concepts in small- and medium-sized enterprises.

Keywords

History of engineering & technology --- latent semantic analysis --- virtual quality management --- concept investigation --- concept disambiguation --- knowledge discovery --- sustainable methodologies --- small and medium sized enterprises --- material handling systems --- simulation --- ARENA®, time study --- overall equipment effectiveness --- manufacturing performance --- Industry 4.0 --- manufacturing sustainability --- manufacturing process model --- business process management --- hierarchical clustering --- similarity --- BPMN --- human factors --- cyber-physical systems --- cyber-physical production systems --- anthropocentric design --- Operator 4.0 --- human–machine interaction --- energy efficient operation --- manufacturing system --- stochastic event --- digital twin --- Max-plus Algebra --- MATLAB-Simulink --- advanced manufacturing --- industry 4.0 --- SME --- technology adoption model --- assembly supply chain --- sustainability --- complexity indicators --- testing criteria --- SMEs --- e-business modelling --- LSP Lifecycle Model --- Quality Function Deployment --- Best-Worst Method --- Internet of Things --- India --- awareness --- small and medium-sized enterprises --- assessment model --- collaborative robotics --- physical ergonomics --- human-robot collaboration --- human-centered design --- assembly --- small and medium sized enterprise --- positive complexity --- negative complexity --- infeasible configurations --- product platform --- customer’s perception --- assessment --- field study --- smart manufacturing --- cloud platform --- artificial intelligence --- machine learning --- deep learning --- smart logistics --- logistics 4.0 --- smart technologies --- sustainable agriculture --- plant factory

Listing 1 - 8 of 8
Sort by