Listing 1 - 4 of 4 |
Sort by
|
Choose an application
Additive manufacturing is already actively used in various high-tech industries today. At the same time, there is a certain limitation and imperfection of known and widely used conventional materials when they are used in additive manufacturing. In this regard, extensive research and development are aimed at the advancements of new materials by adjusting the chemical compositions of conventional alloys, new equipment with expanded functionality and the ability to work with a wide range of materials that were previously not available for additive manufacturing. This Special Issue covers a wide scope of additive manufacturing processes, comprising investigation, characterization of materials and their properties, development and application of new materials, structures designed for additive manufacturing, as well as processes and techniques that will expand the potential applications of layer-by-layer synthesis.
Technology: general issues --- Chemical engineering --- additive manufacturing --- binder jetting --- silicon carbide --- spray drying --- pyrolysis --- n/a --- direct laser deposition (DLD) --- direct metal deposition --- additive manufacturing (AM) --- corrosion resistant steel --- heat treatment (HT) --- maraging steel --- microstructure --- mechanical characteristics --- selective laser melting --- titanium alloy --- mechanical alloying --- powder bed fusion --- nitinol --- direct laser deposition --- heat transfer --- mass transfer --- hydrodynamics --- simulation of the melt pool --- alloys --- Ti-6Al-4V --- direct energy deposition --- thermal history --- annealing --- phase composition --- tensile properties --- tungsten carbides --- cobalt --- nanopowder --- synthesis --- granulation --- spheroidization --- DC thermal plasma --- lead-free piezoceramic --- barium titanate --- sintering --- piezoelectric properties --- titanium alloys --- multimaterial 3D printing --- graded materials --- mechanical properties --- stress relaxation --- elevated temperatures --- pure tungsten --- selective electron beam melting (SEBM) --- porosity --- soft-magnetic alloy --- FeSiB --- magnetic properties
Choose an application
Demand for advanced X-ray scattering techniques has increased tremendously in recent years with the development of new functional materials. These characterizations have a huge impact on evaluating the microstructure and structure–property relation in functional materials. Thanks to its non-destructive character and adaptability to various environments, the X-ray is a powerful tool, being irreplaceable for novel in situ and operando studies. This book is dedicated to the latest advances in X-ray diffraction using both synchrotron radiation as well as laboratory sources for analyzing the microstructure and morphology in a broad range (organic, inorganic, hybrid, etc.) of functional materials.
Technology: general issues --- History of engineering & technology --- Materials science --- lead-free ceramic --- sol–gel process --- barium zirconate titanate --- dielectric property --- conjugated polymer and blends --- in situ GIXD --- additive --- structure --- strain --- X-ray diffraction --- piezoelectric properties --- lanthanum-modified lead zirconate titanate (PLZT) --- zeolite-W --- cation form --- synchrotron X-ray diffraction --- Rietveld refinement --- high-pressure --- smectite --- bulk moduli --- anhydrous and hydrous environments --- synchrotron X-ray powder diffraction --- pressure-transmitting media --- metallic composites --- Ni --- Ni-W alloys --- silver-exchanged natrolite --- pressure-induced insertion --- high energy-density materials --- high pressure and temperature --- Raman spectroscopy --- ammonium azide --- polynitrogen compounds --- superalloys --- low-angle boundaries --- X-ray topography --- turbine blades --- crystal growth --- nano-perovskite (CaTiO3) --- Young’s modulus --- ultrasonic-pulse echo --- planar density --- residual stress --- laser cavitation peening --- pulse laser --- wedge-shaped amphiphile --- double gyroid phase --- grazing-incidence X-ray scattering --- environmental atomic force microscopy --- vapor annealing --- Williamson-Hall (W-H) --- uniform stress deformation model (USDM) --- hydroxyapatite --- ultrasonic pulse-echo --- thermoplastic polyurethane ureas --- shape memory materials --- synchrotron SAXS/WAXS --- polymer deformation --- lamellar morphology --- poly-ε-caprolactone --- poly(1,4-butylene adipate) --- lead-free ceramic --- sol–gel process --- barium zirconate titanate --- dielectric property --- conjugated polymer and blends --- in situ GIXD --- additive --- structure --- strain --- X-ray diffraction --- piezoelectric properties --- lanthanum-modified lead zirconate titanate (PLZT) --- zeolite-W --- cation form --- synchrotron X-ray diffraction --- Rietveld refinement --- high-pressure --- smectite --- bulk moduli --- anhydrous and hydrous environments --- synchrotron X-ray powder diffraction --- pressure-transmitting media --- metallic composites --- Ni --- Ni-W alloys --- silver-exchanged natrolite --- pressure-induced insertion --- high energy-density materials --- high pressure and temperature --- Raman spectroscopy --- ammonium azide --- polynitrogen compounds --- superalloys --- low-angle boundaries --- X-ray topography --- turbine blades --- crystal growth --- nano-perovskite (CaTiO3) --- Young’s modulus --- ultrasonic-pulse echo --- planar density --- residual stress --- laser cavitation peening --- pulse laser --- wedge-shaped amphiphile --- double gyroid phase --- grazing-incidence X-ray scattering --- environmental atomic force microscopy --- vapor annealing --- Williamson-Hall (W-H) --- uniform stress deformation model (USDM) --- hydroxyapatite --- ultrasonic pulse-echo --- thermoplastic polyurethane ureas --- shape memory materials --- synchrotron SAXS/WAXS --- polymer deformation --- lamellar morphology --- poly-ε-caprolactone --- poly(1,4-butylene adipate)
Choose an application
Demand for advanced X-ray scattering techniques has increased tremendously in recent years with the development of new functional materials. These characterizations have a huge impact on evaluating the microstructure and structure–property relation in functional materials. Thanks to its non-destructive character and adaptability to various environments, the X-ray is a powerful tool, being irreplaceable for novel in situ and operando studies. This book is dedicated to the latest advances in X-ray diffraction using both synchrotron radiation as well as laboratory sources for analyzing the microstructure and morphology in a broad range (organic, inorganic, hybrid, etc.) of functional materials.
Technology: general issues --- History of engineering & technology --- Materials science --- lead-free ceramic --- sol–gel process --- barium zirconate titanate --- dielectric property --- conjugated polymer and blends --- in situ GIXD --- additive --- structure --- strain --- X-ray diffraction --- piezoelectric properties --- lanthanum-modified lead zirconate titanate (PLZT) --- zeolite-W --- cation form --- synchrotron X-ray diffraction --- Rietveld refinement --- high-pressure --- smectite --- bulk moduli --- anhydrous and hydrous environments --- synchrotron X-ray powder diffraction --- pressure-transmitting media --- metallic composites --- Ni --- Ni-W alloys --- silver-exchanged natrolite --- pressure-induced insertion --- high energy-density materials --- high pressure and temperature --- Raman spectroscopy --- ammonium azide --- polynitrogen compounds --- superalloys --- low-angle boundaries --- X-ray topography --- turbine blades --- crystal growth --- nano-perovskite (CaTiO3) --- Young’s modulus --- ultrasonic-pulse echo --- planar density --- residual stress --- laser cavitation peening --- pulse laser --- wedge-shaped amphiphile --- double gyroid phase --- grazing-incidence X-ray scattering --- environmental atomic force microscopy --- vapor annealing --- Williamson-Hall (W-H) --- uniform stress deformation model (USDM) --- hydroxyapatite --- ultrasonic pulse-echo --- thermoplastic polyurethane ureas --- shape memory materials --- synchrotron SAXS/WAXS --- polymer deformation --- lamellar morphology --- poly-ε-caprolactone --- poly(1,4-butylene adipate)
Choose an application
Demand for advanced X-ray scattering techniques has increased tremendously in recent years with the development of new functional materials. These characterizations have a huge impact on evaluating the microstructure and structure–property relation in functional materials. Thanks to its non-destructive character and adaptability to various environments, the X-ray is a powerful tool, being irreplaceable for novel in situ and operando studies. This book is dedicated to the latest advances in X-ray diffraction using both synchrotron radiation as well as laboratory sources for analyzing the microstructure and morphology in a broad range (organic, inorganic, hybrid, etc.) of functional materials.
lead-free ceramic --- sol–gel process --- barium zirconate titanate --- dielectric property --- conjugated polymer and blends --- in situ GIXD --- additive --- structure --- strain --- X-ray diffraction --- piezoelectric properties --- lanthanum-modified lead zirconate titanate (PLZT) --- zeolite-W --- cation form --- synchrotron X-ray diffraction --- Rietveld refinement --- high-pressure --- smectite --- bulk moduli --- anhydrous and hydrous environments --- synchrotron X-ray powder diffraction --- pressure-transmitting media --- metallic composites --- Ni --- Ni-W alloys --- silver-exchanged natrolite --- pressure-induced insertion --- high energy-density materials --- high pressure and temperature --- Raman spectroscopy --- ammonium azide --- polynitrogen compounds --- superalloys --- low-angle boundaries --- X-ray topography --- turbine blades --- crystal growth --- nano-perovskite (CaTiO3) --- Young’s modulus --- ultrasonic-pulse echo --- planar density --- residual stress --- laser cavitation peening --- pulse laser --- wedge-shaped amphiphile --- double gyroid phase --- grazing-incidence X-ray scattering --- environmental atomic force microscopy --- vapor annealing --- Williamson-Hall (W-H) --- uniform stress deformation model (USDM) --- hydroxyapatite --- ultrasonic pulse-echo --- thermoplastic polyurethane ureas --- shape memory materials --- synchrotron SAXS/WAXS --- polymer deformation --- lamellar morphology --- poly-ε-caprolactone --- poly(1,4-butylene adipate)
Listing 1 - 4 of 4 |
Sort by
|