Listing 1 - 2 of 2 |
Sort by
|
Choose an application
The Molecular Biology of Cyanobacteria summarizes more than a decade of progress in analyzing the taxonomy, biochemistry, physiology, cellular differentiation and developmental biology of cyanobacteria by modern molecular methods, especially molecular genetics. During this period cyanobacterial molecular biologists have been 'studying those things that cyanobacteria do well', and they have made cyanobacteria the organisms of choice for detailed molecular analyses of oxygenic photosynthesis. Part 1 contains chapters describing the molecular evolution and taxonomy of the cyanobacteria, as well as chapters describing cyanelles and the origins of algal and higher plant chloroplasts. Also included are chapters describing the picoplanktonic, oceanic cyanobacteria and prochlorophytes, 'the other cyanobacteria'. Part 2 is devoted to a detailed description of structural and functional aspects of the cyanobacterial photosynthetic apparatus. Included are chapters on thylakoid membrane organization, phycobiliproteins, and phycobilisomes, Photosystem I, Photosystem II, the cytochrome b6f complex, ATP synthase, and soluble electron carriers associated with photosynthetic electron transport. Structure, as it relates to biological function, is heavily emphasized in this portion of the book. Part 3 describes other important biochemical processes, including respiration, carbon metabolism, inorganic carbon uptake and concentration, nitrogen metabolism, tetrapyrrole biosynthesis, and carotenoid biosynthesis. Part 4 describes the cyanobacterial genetic systems and gene regulatory phenomena in these organisms. Emphasis is placed on responses to environmental stimuli, such as light intensity, light wavelength, temperature, and nutrient availability. Cellular differentiation and development phenomena, including the formation of heterocysts for nitrogen fixation and hormogonia for dispersal of organisms in the environment, are described. The book comprises 28 chapters written by lead
Prochlorophytes --- carotenoids --- cytochrome --- gene regulation --- genetic analysis --- heterocysts --- hormogonia --- photosystem --- pigments --- respiration --- Plant physiology. Plant biophysics --- Cyanobacteria --- Molecular aspects. --- CYANOBACTERIA --- PHOTOSYNTHETIC APPARATUS --- MOLECULAR EVOLUTION --- MARINE AREAS --- PICOPLANKTON --- PHYTOSYNTHESIS --- PROCHLOROPHYTA --- CYANELLES --- PHOTOSYNTHESIS --- RESPIRATION --- NITROGEN --- GENETIC ANALYSIS --- ECOPHYSIOLOGY --- HEAT-SHOCK --- HETEROCYSTS --- HORMOGONIA --- MOLECULAR BIOLOGY --- TAXONOMY --- REGULATION --- MECHANISMS --- METABOLISM
Choose an application
This book focuses on recent advances in the synthesis of nanoparticles, their characterization, and their applications in different fields such as catalysis, photonics, magnetism, and nanomedicine. Nanoparticles receive a large share of the worldwide research activity in contemporary materials science. This is witnessed by the number of scientific papers with ""nanoparticle"" as a keyword, increasing linearly in the last 10 years from about 16,000 in 2009 to about 50,000 in 2019. This impressive widespread interest stems from the basic science of nanoparticles, which constitute a bridge between the molecular and the bulk worlds, as well as from their technological applications. The preparation of nanoparticles is a crossroad of materials science where chemists, physicists, engineers, and even biologists frequently meet, leading to a continuous improvement of existing techniques and to the invention of new methods. The reader interested in nanoparticles synthesis and properties will here find a valuable selection of scientific cases that cannot cover all methods and applications relevant to the field, but still provide an updated overview on the fervent research activity focused on nanoparticles.
silicon quantum dots --- nanocomposites --- finite element method --- nanoparticles --- non-aqueous solvent controlled sol-gel route --- Au-Fe alloy --- isomalto-oligosaccharide --- cytotoxic activity --- gas phase condensation --- synergistic effect --- alloys --- metal oxides --- egg white protein --- nanoparticle --- submicrometre spherical particles --- emulsifying property --- Ligustrum ovalifolium L. --- A375 cells --- core-shell particles --- physical adsorption --- pulse laser deposition --- ovarian carcinoma cells --- mobility --- FePt alloy --- reaction control --- titanium --- PLD --- ceria --- cobalt --- hot spot --- graphene --- thermal aggregation --- phase separation --- one-pot hydrothermal method --- super-luminescent diode --- electron microscopy --- synthesis --- InPBi --- laser wavelength --- hierarchical structure --- emission spectrum --- zeta potential --- glycation --- La-Na co-doped TiO2 --- plasmonic coupling --- silver nanoparticles --- blue --- catalytic activity --- magnetic phase --- photothermal therapy --- quantum dot --- iron --- gold nanorods --- methylene --- phytosynthesis --- laser melting in liquid
Listing 1 - 2 of 2 |
Sort by
|