Listing 1 - 10 of 22 << page
of 3
>>
Sort by

Book
Plant Responses to Biotic and Abiotic Stresses: Lessons from Cell Signaling
Authors: ---
Year: 2017 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Facing stressful conditions imposed by their environment and affecting their growth and their development throughout their life cycle, plants must be able to perceive, to process and to translate different stimuli into adaptive responses. Understanding the organism-coordinated responses involves a fine description of the mechanisms occurring at the cellular and molecular level. A major challenge is also to understand how the large diversity of molecules identified as signals, sensors or effectors could drive a cell to the appropriate plant response and to finally cope with various environmental cues. In this Research Topic we aim to provide an overview of various signaling mechanisms or to present new molecular signals involved in stress response and to demonstrate how basic/fundamental research on cell signaling will help to understand stress responses at the whole plant level.


Book
Plant Responses to Biotic and Abiotic Stresses: Lessons from Cell Signaling
Authors: ---
Year: 2017 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Facing stressful conditions imposed by their environment and affecting their growth and their development throughout their life cycle, plants must be able to perceive, to process and to translate different stimuli into adaptive responses. Understanding the organism-coordinated responses involves a fine description of the mechanisms occurring at the cellular and molecular level. A major challenge is also to understand how the large diversity of molecules identified as signals, sensors or effectors could drive a cell to the appropriate plant response and to finally cope with various environmental cues. In this Research Topic we aim to provide an overview of various signaling mechanisms or to present new molecular signals involved in stress response and to demonstrate how basic/fundamental research on cell signaling will help to understand stress responses at the whole plant level.


Book
Plant Responses to Biotic and Abiotic Stresses: Lessons from Cell Signaling
Authors: ---
Year: 2017 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Facing stressful conditions imposed by their environment and affecting their growth and their development throughout their life cycle, plants must be able to perceive, to process and to translate different stimuli into adaptive responses. Understanding the organism-coordinated responses involves a fine description of the mechanisms occurring at the cellular and molecular level. A major challenge is also to understand how the large diversity of molecules identified as signals, sensors or effectors could drive a cell to the appropriate plant response and to finally cope with various environmental cues. In this Research Topic we aim to provide an overview of various signaling mechanisms or to present new molecular signals involved in stress response and to demonstrate how basic/fundamental research on cell signaling will help to understand stress responses at the whole plant level.


Book
When Chemistry Meets Biology - Generating Innovative Concepts, Methods and Tools for Scientific Discovery in the Plant Sciences
Authors: ---
Year: 2016 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Biologically active small molecules have increasingly been applied in plant biology to dissect and understand biological systems. This is evident from the frequent use of potent and selective inhibitors of enzymes or other biological processes such as transcription, translation, or protein degradation. In contrast to animal systems, which are nurtured from drug research, the systematic development of novel bioactive small molecules as research tools for plant systems is a largely underexplored research area. This is surprising since bioactive small molecules bear great potential for generating new, powerful tools for dissecting diverse biological processes. In particular, when small molecules are integrated into genetic strategies (thereby defining “chemical genetics”), they may help to circumvent inherent problems of classical (forward) genetics. There are now clear examples of important, fundamental discoveries originating from plant chemical genetics that demonstrate the power, but not yet fully exploited potential, of this experimental approach. These include the unraveling of molecular mechanisms and critical steps in hormone signaling, activation of defense reactions and dynamic intracellular processes. The intention of this Research Topic of Frontiers in Plant Physiology is to summarize the current status of research at the interface between chemistry and biology and to identify future research challenges. The research topic covers diverse aspects of plant chemical biology, including the identification of bioactive small molecules through screening processes from chemical libraries and natural sources, which rely on robust and quantitative high-throughput bioassays, the critical evaluation and characterization of the compound’s activity (selectivity) and, ultimately, the identification of its protein target(s) and mode-of-action, which is yet the biggest challenge of all. Such well-characterized, selective chemicals are attractive tools for basic research, allowing the functional dissection of plant signaling processes, or for applied purposes, if designed for protection of crop plants from disease. New methods and data mining tools for assessing the bioactivity profile of compounds, exploring the chemical space for structure–function relationships, and comprehensive chemical fingerprinting (metabolomics) are also important strategies in plant chemical biology. In addition, there is a continuing need for diverse target-specific bioprobes that help profiling enzymatic activities or selectively label protein complexes or cellular compartments. To achieve these goals and to add suitable probes and methods to the experimental toolbox, plant biologists need to closely cooperate with synthetic chemists. The development of such tailored chemicals that beyond application in basic research can modify traits of crop plants or target specific classes of weeds or pests by collaboration of applied and academic research groups may provide a bright future for plant chemical biology. The current Research Topic covers the breadth of the field by presenting original research articles, methods papers, reviews, perspectives and opinions.


Book
When Chemistry Meets Biology - Generating Innovative Concepts, Methods and Tools for Scientific Discovery in the Plant Sciences
Authors: ---
Year: 2016 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Biologically active small molecules have increasingly been applied in plant biology to dissect and understand biological systems. This is evident from the frequent use of potent and selective inhibitors of enzymes or other biological processes such as transcription, translation, or protein degradation. In contrast to animal systems, which are nurtured from drug research, the systematic development of novel bioactive small molecules as research tools for plant systems is a largely underexplored research area. This is surprising since bioactive small molecules bear great potential for generating new, powerful tools for dissecting diverse biological processes. In particular, when small molecules are integrated into genetic strategies (thereby defining “chemical genetics”), they may help to circumvent inherent problems of classical (forward) genetics. There are now clear examples of important, fundamental discoveries originating from plant chemical genetics that demonstrate the power, but not yet fully exploited potential, of this experimental approach. These include the unraveling of molecular mechanisms and critical steps in hormone signaling, activation of defense reactions and dynamic intracellular processes. The intention of this Research Topic of Frontiers in Plant Physiology is to summarize the current status of research at the interface between chemistry and biology and to identify future research challenges. The research topic covers diverse aspects of plant chemical biology, including the identification of bioactive small molecules through screening processes from chemical libraries and natural sources, which rely on robust and quantitative high-throughput bioassays, the critical evaluation and characterization of the compound’s activity (selectivity) and, ultimately, the identification of its protein target(s) and mode-of-action, which is yet the biggest challenge of all. Such well-characterized, selective chemicals are attractive tools for basic research, allowing the functional dissection of plant signaling processes, or for applied purposes, if designed for protection of crop plants from disease. New methods and data mining tools for assessing the bioactivity profile of compounds, exploring the chemical space for structure–function relationships, and comprehensive chemical fingerprinting (metabolomics) are also important strategies in plant chemical biology. In addition, there is a continuing need for diverse target-specific bioprobes that help profiling enzymatic activities or selectively label protein complexes or cellular compartments. To achieve these goals and to add suitable probes and methods to the experimental toolbox, plant biologists need to closely cooperate with synthetic chemists. The development of such tailored chemicals that beyond application in basic research can modify traits of crop plants or target specific classes of weeds or pests by collaboration of applied and academic research groups may provide a bright future for plant chemical biology. The current Research Topic covers the breadth of the field by presenting original research articles, methods papers, reviews, perspectives and opinions.


Book
When Chemistry Meets Biology - Generating Innovative Concepts, Methods and Tools for Scientific Discovery in the Plant Sciences
Authors: ---
Year: 2016 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Biologically active small molecules have increasingly been applied in plant biology to dissect and understand biological systems. This is evident from the frequent use of potent and selective inhibitors of enzymes or other biological processes such as transcription, translation, or protein degradation. In contrast to animal systems, which are nurtured from drug research, the systematic development of novel bioactive small molecules as research tools for plant systems is a largely underexplored research area. This is surprising since bioactive small molecules bear great potential for generating new, powerful tools for dissecting diverse biological processes. In particular, when small molecules are integrated into genetic strategies (thereby defining “chemical genetics”), they may help to circumvent inherent problems of classical (forward) genetics. There are now clear examples of important, fundamental discoveries originating from plant chemical genetics that demonstrate the power, but not yet fully exploited potential, of this experimental approach. These include the unraveling of molecular mechanisms and critical steps in hormone signaling, activation of defense reactions and dynamic intracellular processes. The intention of this Research Topic of Frontiers in Plant Physiology is to summarize the current status of research at the interface between chemistry and biology and to identify future research challenges. The research topic covers diverse aspects of plant chemical biology, including the identification of bioactive small molecules through screening processes from chemical libraries and natural sources, which rely on robust and quantitative high-throughput bioassays, the critical evaluation and characterization of the compound’s activity (selectivity) and, ultimately, the identification of its protein target(s) and mode-of-action, which is yet the biggest challenge of all. Such well-characterized, selective chemicals are attractive tools for basic research, allowing the functional dissection of plant signaling processes, or for applied purposes, if designed for protection of crop plants from disease. New methods and data mining tools for assessing the bioactivity profile of compounds, exploring the chemical space for structure–function relationships, and comprehensive chemical fingerprinting (metabolomics) are also important strategies in plant chemical biology. In addition, there is a continuing need for diverse target-specific bioprobes that help profiling enzymatic activities or selectively label protein complexes or cellular compartments. To achieve these goals and to add suitable probes and methods to the experimental toolbox, plant biologists need to closely cooperate with synthetic chemists. The development of such tailored chemicals that beyond application in basic research can modify traits of crop plants or target specific classes of weeds or pests by collaboration of applied and academic research groups may provide a bright future for plant chemical biology. The current Research Topic covers the breadth of the field by presenting original research articles, methods papers, reviews, perspectives and opinions.


Book
Forest-Tree Gene Regulation in Response to Abiotic and Biotic Stress
Authors: ---
ISBN: 3036559485 3036559477 Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The forest ecosystem is the largest terrestrial ecosystem on earth. It not only has the highest biological productivity and the strongest ecological effect, but can also maintain carbon and oxygen balance and control temperature rise. With the rapid development of the economy, climate change has become the largest challenge to the continuation of forest ecosystem. With constantly changing climate, environmental conditions including CO2 concentration,temperature,intensity of rainfall and the probability of extreme weathers are all affected. In particular, extreme heat, extreme drought and intense fall will become more frequent and widespread. Climate change has a great impact on all ecosystems, especially forest ecosystems. As the largest carbon pool on the earth, these area play a very important role in mitigating global climate change. It is necessary to understand what changes have taken place in the growth and development of trees under climate change, the changes that have taken place in the regulation mechanism of trees when multiple stresses occur at the same time, and to determine the regulation mechanism of trees under new stresses? This book presents relevant results from scientific research in the fields of forest tree gene regulation in response to abiotic and biotic stresses that can contribute to the understanding of forest response mechanisms to different environmental signals and provide a new insight for tolerant tree improvement.


Book
Adaptation of the Root System to the Environment
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is a collection of fundamental and applied research on the plant root response to environmental clues. In particular, the continued adaptation of both fine and coarse roots to modifications due to natural and anthropogenic causes were investigated from different viewpoints. Additionally, specific root traits were investigated as an optimal indicator of responses to the environment at the whole-plant level. Aspects such as an innovative methodological approach, the root morphology, gene expression, and primary and secondary metabolite concentrations were at the center of the investigations conducted in this collection.


Book
Adaptation of the Root System to the Environment
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is a collection of fundamental and applied research on the plant root response to environmental clues. In particular, the continued adaptation of both fine and coarse roots to modifications due to natural and anthropogenic causes were investigated from different viewpoints. Additionally, specific root traits were investigated as an optimal indicator of responses to the environment at the whole-plant level. Aspects such as an innovative methodological approach, the root morphology, gene expression, and primary and secondary metabolite concentrations were at the center of the investigations conducted in this collection.

Listing 1 - 10 of 22 << page
of 3
>>
Sort by