Listing 1 - 10 of 25 | << page >> |
Sort by
|
Choose an application
[This book focus on the most recent advances related to the design and processing methods of different nanobiomaterials, films, and fibers; surface functionalization strategies, including biological performance assessment and cytocompatibility; and their applications in tissue engineering strategies.]
antibacterial activity --- tissue engineering --- biomaterials fabrication --- regeneration --- Gadolinium chelate --- MRI --- cell sheet --- drug delivery --- magnetic nanoparticles --- graphene --- silk fibroin --- titania nanotubes --- biointegration --- anodic oxidation --- protein --- nanotechnology --- bone regeneration --- osteoclastogenesis --- dental stem cells --- mimetic peptide --- epithelial-mesenchymal interactions --- cornea endothelial cells --- wound healing --- antibacterial properties --- nanomaterials --- medicine --- RANK-RANKL-OPG --- nanofibers --- odontogenic cells --- lysophosphatidic acid --- photocatalytic activity --- dental enamel regeneration --- dental implant
Choose an application
This Special Issue on “Photocatalytic Processes for Environmental Applications” offers an overview of the different photochemical processes (photocatalysis, photo-Fenton, and photolysis) triggered by different inorganic compounds that can be used for environmental applications, including water treatments. Photocatalytic mechanisms are based on the generation of electron/hole (e−/h+) pairs under suitable irradiation (hν > Eg). For water treatment, these charge carriers can form reactive oxygen species (ROS), such as hydroxyl and superoxide anion radicals, that degrade aqueous organic pollutants efficiently. In this Special Issue, different heterogeneous photocatalysts, including TiO2, CdS, CoFe2O4 and vanadium-based oxides, are discussed regarding their efficiency in the degradation of organic pollutants in water. In addition, some of these photocatalysts are composed of chemical elements that are active in Fenton-based processes, thus exhibiting enhanced degradation extents. In addition to the use of materials in water treatments, homogeneous systems, including Fe(III)-EDDS photo-Fenton and H2O2 photolysis, are also discussed to provide further possibilities for photochemically-assisted water treatments. Another interesting method related to the efficient treatment of water is the use of photoelectrochemical (PEC) systems, where the WO3 photoanode can produce H2O2, which can be subsequently used as a reactant in photocatalysis, photo-Fenton and photolysis systems.
Technology: general issues --- cobalt ferrite --- magnetic properties --- solution combustion method --- rhodamine B --- photocatalytic activity --- photoelectrocatalysis --- hydrogen peroxide --- WO3 --- ethanol --- glycerol --- Direct Blue 1 --- irradiated TiO2 --- heterogeneous photocatalysis --- electron-beam --- adsorption --- photo-Fenton --- EDDS --- 2,4-DCP --- organic matter --- inorganic ions --- natural water bodies --- VUV --- photoreactor --- CFD --- MB --- water treatment --- vanadium oxide --- photochemistry --- environment --- materials --- pollutant --- hydrogen --- CdS --- photocatalysis --- pseudo-first order kinetics --- n/a
Choose an application
This Special Issue on “Photocatalytic Processes for Environmental Applications” offers an overview of the different photochemical processes (photocatalysis, photo-Fenton, and photolysis) triggered by different inorganic compounds that can be used for environmental applications, including water treatments. Photocatalytic mechanisms are based on the generation of electron/hole (e−/h+) pairs under suitable irradiation (hν > Eg). For water treatment, these charge carriers can form reactive oxygen species (ROS), such as hydroxyl and superoxide anion radicals, that degrade aqueous organic pollutants efficiently. In this Special Issue, different heterogeneous photocatalysts, including TiO2, CdS, CoFe2O4 and vanadium-based oxides, are discussed regarding their efficiency in the degradation of organic pollutants in water. In addition, some of these photocatalysts are composed of chemical elements that are active in Fenton-based processes, thus exhibiting enhanced degradation extents. In addition to the use of materials in water treatments, homogeneous systems, including Fe(III)-EDDS photo-Fenton and H2O2 photolysis, are also discussed to provide further possibilities for photochemically-assisted water treatments. Another interesting method related to the efficient treatment of water is the use of photoelectrochemical (PEC) systems, where the WO3 photoanode can produce H2O2, which can be subsequently used as a reactant in photocatalysis, photo-Fenton and photolysis systems.
cobalt ferrite --- magnetic properties --- solution combustion method --- rhodamine B --- photocatalytic activity --- photoelectrocatalysis --- hydrogen peroxide --- WO3 --- ethanol --- glycerol --- Direct Blue 1 --- irradiated TiO2 --- heterogeneous photocatalysis --- electron-beam --- adsorption --- photo-Fenton --- EDDS --- 2,4-DCP --- organic matter --- inorganic ions --- natural water bodies --- VUV --- photoreactor --- CFD --- MB --- water treatment --- vanadium oxide --- photochemistry --- environment --- materials --- pollutant --- hydrogen --- CdS --- photocatalysis --- pseudo-first order kinetics --- n/a
Choose an application
This Special Issue on “Photocatalytic Processes for Environmental Applications” offers an overview of the different photochemical processes (photocatalysis, photo-Fenton, and photolysis) triggered by different inorganic compounds that can be used for environmental applications, including water treatments. Photocatalytic mechanisms are based on the generation of electron/hole (e−/h+) pairs under suitable irradiation (hν > Eg). For water treatment, these charge carriers can form reactive oxygen species (ROS), such as hydroxyl and superoxide anion radicals, that degrade aqueous organic pollutants efficiently. In this Special Issue, different heterogeneous photocatalysts, including TiO2, CdS, CoFe2O4 and vanadium-based oxides, are discussed regarding their efficiency in the degradation of organic pollutants in water. In addition, some of these photocatalysts are composed of chemical elements that are active in Fenton-based processes, thus exhibiting enhanced degradation extents. In addition to the use of materials in water treatments, homogeneous systems, including Fe(III)-EDDS photo-Fenton and H2O2 photolysis, are also discussed to provide further possibilities for photochemically-assisted water treatments. Another interesting method related to the efficient treatment of water is the use of photoelectrochemical (PEC) systems, where the WO3 photoanode can produce H2O2, which can be subsequently used as a reactant in photocatalysis, photo-Fenton and photolysis systems.
Technology: general issues --- cobalt ferrite --- magnetic properties --- solution combustion method --- rhodamine B --- photocatalytic activity --- photoelectrocatalysis --- hydrogen peroxide --- WO3 --- ethanol --- glycerol --- Direct Blue 1 --- irradiated TiO2 --- heterogeneous photocatalysis --- electron-beam --- adsorption --- photo-Fenton --- EDDS --- 2,4-DCP --- organic matter --- inorganic ions --- natural water bodies --- VUV --- photoreactor --- CFD --- MB --- water treatment --- vanadium oxide --- photochemistry --- environment --- materials --- pollutant --- hydrogen --- CdS --- photocatalysis --- pseudo-first order kinetics --- cobalt ferrite --- magnetic properties --- solution combustion method --- rhodamine B --- photocatalytic activity --- photoelectrocatalysis --- hydrogen peroxide --- WO3 --- ethanol --- glycerol --- Direct Blue 1 --- irradiated TiO2 --- heterogeneous photocatalysis --- electron-beam --- adsorption --- photo-Fenton --- EDDS --- 2,4-DCP --- organic matter --- inorganic ions --- natural water bodies --- VUV --- photoreactor --- CFD --- MB --- water treatment --- vanadium oxide --- photochemistry --- environment --- materials --- pollutant --- hydrogen --- CdS --- photocatalysis --- pseudo-first order kinetics
Choose an application
In recent years, the formulation of innovative photocatalysts activated by visible or solar light has been attracting increasing attention because of their notable potential for environmental remediation and use in organic synthesis reactions. Generally, the strategies for the development of visible-light-active photocatalysts are mainly focused on enhancing degradation efficiency (in the case of environmental remediation) or increasing selectivity toward the desired product (in the case of organic synthesis). These goals can be achieved by doping the semiconductor lattice with metal and/or non-metal elements in order to reduce band gap energy, thereby providing the semiconductor with the ability to absorb light at a wavelength higher than the UV range. Other interesting options are the formulation of different types of heterojunctions (to increase visible absorption properties and to reduce the recombination rate of charge carriers) and the development of innovative catalytic materials with semiconducting properties. This reprint is focused on visible-light-active photocatalysts for environmental remediation and organic synthesis, featuring the state of the art as well as advances in this field.
Technology: general issues --- History of engineering & technology --- Materials science --- TiO2 --- activated carbon --- nanohybrid --- photodegradation --- azo dyes --- sunlight --- photocatalysis --- visible light --- biomass --- waste --- green chemistry --- nanocatalysis --- nitrobenzene --- Ag/Cu2O --- persulfate --- sulfate radical --- heterostructure --- diamond nanocrystals --- bacterial photoinactivation --- sillenite Bi12NiO19 --- Rietveld method --- optical properties --- BB41 dye --- electrospinning --- carbon composite nanofibers --- water pollution --- Ag3PO4 --- photocatalyst --- C3N4 --- MoS2 --- composite --- photocatalytic oxidation --- Cr(VI) reduction --- cobalt --- decolorization --- Remazol Black --- sulfur --- hydrophosphination --- zirconium --- phosphines --- TiO2 thin film --- oxygen and argon gas flow rates --- acetaminophen --- photocatalytic activity --- response surface method --- Box-Behnken design --- TiO2 --- activated carbon --- nanohybrid --- photodegradation --- azo dyes --- sunlight --- photocatalysis --- visible light --- biomass --- waste --- green chemistry --- nanocatalysis --- nitrobenzene --- Ag/Cu2O --- persulfate --- sulfate radical --- heterostructure --- diamond nanocrystals --- bacterial photoinactivation --- sillenite Bi12NiO19 --- Rietveld method --- optical properties --- BB41 dye --- electrospinning --- carbon composite nanofibers --- water pollution --- Ag3PO4 --- photocatalyst --- C3N4 --- MoS2 --- composite --- photocatalytic oxidation --- Cr(VI) reduction --- cobalt --- decolorization --- Remazol Black --- sulfur --- hydrophosphination --- zirconium --- phosphines --- TiO2 thin film --- oxygen and argon gas flow rates --- acetaminophen --- photocatalytic activity --- response surface method --- Box-Behnken design
Choose an application
Photoactive nanomaterials have been receiving increasing attention due to their potential application in the light-driven degradation of water and gas-phase pollutants. However, to exploit the great potential of photoactive materials and access their properties requires fine-tuning of their size/shape-dependent chemical–physical properties, and on the ability to integrate them in photoreactors or to deposit them onto large surfaces. Therefore, the synthetic approach as well as post-synthesis manipulation could strongly affect the final photocatalytic properties of the nanomaterial. The aim of the present Special Issue is to report on the most recent progress towards the application of photoactive nanomaterials and nanomaterial-based coatings in pollutant degradation, paying particular attention to cases close to real application: scalable synthetic approaches to nanocatalysts, preparation of nanocatalyst-based coatings, degradation of real pollutants and bacterial inactivation, and application in building materials.
toxicity --- polar herbicide --- composite nanorods --- heterojunction --- degradation --- nanocomposites --- nanoparticles --- polyester --- TiO2 nanotube --- environmental remediation --- building materials --- hydroxyapatite --- VOCs --- reactive green 12 --- Pt loaded TiO2 --- nanomaterials --- expansion --- photocatalytic activity --- CuxO/TiO2 --- water remediation --- antimicrobial properties --- sputtering --- diclofenac --- mesoporous --- TiO2 --- advanced oxidation processes --- mortar --- disinfection --- HiPIMS --- microcracks --- Cu2O --- sulfate attack --- NOx --- photocatalysis --- blast furnace slag --- paraquat --- recalcitrant pollutants --- shell thickness --- water treatments --- visible light LEDs --- cement --- deterioration --- transformation products --- gas-phase pollutants --- titanium dioxide --- photoelectrocatalysis --- Z-scheme
Choose an application
In recent years, the formulation of innovative photocatalysts activated by visible or solar light has been attracting increasing attention because of their notable potential for environmental remediation and use in organic synthesis reactions. Generally, the strategies for the development of visible-light-active photocatalysts are mainly focused on enhancing degradation efficiency (in the case of environmental remediation) or increasing selectivity toward the desired product (in the case of organic synthesis). These goals can be achieved by doping the semiconductor lattice with metal and/or non-metal elements in order to reduce band gap energy, thereby providing the semiconductor with the ability to absorb light at a wavelength higher than the UV range. Other interesting options are the formulation of different types of heterojunctions (to increase visible absorption properties and to reduce the recombination rate of charge carriers) and the development of innovative catalytic materials with semiconducting properties. This reprint is focused on visible-light-active photocatalysts for environmental remediation and organic synthesis, featuring the state of the art as well as advances in this field.
TiO2 --- activated carbon --- nanohybrid --- photodegradation --- azo dyes --- sunlight --- photocatalysis --- visible light --- biomass --- waste --- green chemistry --- nanocatalysis --- nitrobenzene --- Ag/Cu2O --- persulfate --- sulfate radical --- heterostructure --- diamond nanocrystals --- bacterial photoinactivation --- sillenite Bi12NiO19 --- Rietveld method --- optical properties --- BB41 dye --- electrospinning --- carbon composite nanofibers --- water pollution --- Ag3PO4 --- photocatalyst --- C3N4 --- MoS2 --- composite --- photocatalytic oxidation --- Cr(VI) reduction --- n/a --- cobalt --- decolorization --- Remazol Black --- sulfur --- hydrophosphination --- zirconium --- phosphines --- TiO2 thin film --- oxygen and argon gas flow rates --- acetaminophen --- photocatalytic activity --- response surface method --- Box–Behnken design --- Box-Behnken design
Choose an application
The book compiles scientific articles describing advances in nanomaterial synthesis and their application in water remediation. The publications treat diverse problems such as dye degradation, heavy metal ion, as well as radioactive element capture and sequestration. There are 10 original research articles and one review article. The latter proposes graphene/CNT and Prussian blue nanocomposites for radioactive 137-cesium extraction from aqueous media. All reports thoroughly characterize the nanomaterials post-synthesis and describe their catalytic, photocatalytic, or ion exchange activities in contaminated water. The dyes studied in the collection are azo dyes, i.e. methylene blue and orange, rhodamine B, phenolic dyes viz. bromophenol blue, and other dyes with sulfonyl groups. Extraction of radioactive elements, including cationic 137Cs+ and anionic 125I?, is also investigated. The omnipresence of ZnO nanoparticles in everyday products and their effects in wastewater are also evaluated. Layered double hydroxide are capable of capturing Ag ions, which then has a catalytic effect on dye degradation. The nanomaterials considered are varied, viz., graphene, CNT, Prussian blue, nanoporous carbon, layered double hydroxides, magnetite, ferrites, organic powders, polymer membranes, bacteria, and inorganic nanomaterials such as MnO and Ag. The book targets an interdisciplinary readership.
LDHs --- magnetic photocatalyst --- n/a --- bioremediation --- membrane --- BiOCl --- BiVO4 --- degradation --- agglomeration --- solvent vapor annealing --- nanoporous carbon --- nanocomposite --- Prussian blue --- stability --- silver nanomaterials --- adsorption --- wastewater --- desalination --- ZnO nanoparticles --- film --- magnetic performance --- metal-organic frameworks --- 137Cs+ selectivity --- nanomixtures --- water remediation --- photocatalytic activity --- adsorption properties --- magnetic extraction --- RGO --- structural regularity --- photocatalytic mechanism --- wastewater treatment --- 137-Cesium --- photocatalyst --- magnetic nanoparticles --- graphene --- radioactive iodine --- carbon nanotubes --- doping modification --- electrospinning --- radioactive contamination --- Mn–Zn ferrite --- mixed wastewater --- manganese oxide --- host–guest interaction --- bromophenol blue --- Dy3+ --- organic pollutants --- dye --- beta-cyclodextrin polymer --- polydopamine --- interaction --- dye removal --- adsorption models --- RhB photodegradation --- hydrothermal method --- supercapacitor --- Mn-Zn ferrite --- host-guest interaction
Choose an application
Since the first works introducing the aluminum intercalated clay family in the early 1970s, interest in the synthesis of Pillared InterLayered Clays (PILC) has increased tremendously, especially research into their properties and energetic and environmental applications. After our comprehensive reviews and book on the synthesis and catalytic applications of these materials, new references have appeared in the literature and the interest in this field is continuously increasing. The aim of this Special Issue is to collect the recent advances developed considering this family of solids.
Technology: general issues --- clays --- Al-PILC --- pillared clays --- scale up --- pillaring solution --- Keggin ion --- reutilization --- Keggin polycation --- concentrated media --- microwave radiation --- pillared montmorillonite --- AlNi-PILC --- Pd-Ce --- catalytic combustion --- benzene --- TPD/TPSR --- ZnO-TiO2/delaminated montmorillonite --- heterostructures --- Ag-coating --- solar photocatalytic activity --- water purification --- cadmium --- chitosan --- modification --- 13X molecular sieve --- removal --- dye remediation --- adsorption --- azo dye --- wastewater --- pillared porous phosphate heterostructures --- isotherm --- sericite --- thermal modification --- acid activation --- sodium modification --- montmorillonite/hydrotalcite composite --- montmorillonite/titania composite --- organoclay --- inverse micelle --- Mn-Al mixed oxide --- combustion catalysts --- ciprofloxacin --- smectite --- pillared clay --- keggin-like mixed Al/Fe polyoxocation --- mineralogical composition --- catalytic wet peroxide oxidation --- mesosilica --- methyl orange --- palygorskite
Choose an application
In recent years, the formulation of innovative photocatalysts activated by visible or solar light has been attracting increasing attention because of their notable potential for environmental remediation and use in organic synthesis reactions. Generally, the strategies for the development of visible-light-active photocatalysts are mainly focused on enhancing degradation efficiency (in the case of environmental remediation) or increasing selectivity toward the desired product (in the case of organic synthesis). These goals can be achieved by doping the semiconductor lattice with metal and/or non-metal elements in order to reduce band gap energy, thereby providing the semiconductor with the ability to absorb light at a wavelength higher than the UV range. Other interesting options are the formulation of different types of heterojunctions (to increase visible absorption properties and to reduce the recombination rate of charge carriers) and the development of innovative catalytic materials with semiconducting properties. This reprint is focused on visible-light-active photocatalysts for environmental remediation and organic synthesis, featuring the state of the art as well as advances in this field.
Technology: general issues --- History of engineering & technology --- Materials science --- TiO2 --- activated carbon --- nanohybrid --- photodegradation --- azo dyes --- sunlight --- photocatalysis --- visible light --- biomass --- waste --- green chemistry --- nanocatalysis --- nitrobenzene --- Ag/Cu2O --- persulfate --- sulfate radical --- heterostructure --- diamond nanocrystals --- bacterial photoinactivation --- sillenite Bi12NiO19 --- Rietveld method --- optical properties --- BB41 dye --- electrospinning --- carbon composite nanofibers --- water pollution --- Ag3PO4 --- photocatalyst --- C3N4 --- MoS2 --- composite --- photocatalytic oxidation --- Cr(VI) reduction --- n/a --- cobalt --- decolorization --- Remazol Black --- sulfur --- hydrophosphination --- zirconium --- phosphines --- TiO2 thin film --- oxygen and argon gas flow rates --- acetaminophen --- photocatalytic activity --- response surface method --- Box–Behnken design --- Box-Behnken design
Listing 1 - 10 of 25 | << page >> |
Sort by
|