Listing 1 - 8 of 8 |
Sort by
|
Choose an application
This book presents an introductory editorial paper and publications referring to current problems and challenges in the field of wastewater treatment. The published articles cover a wide range of topics (reducing the concentration of hydrogen sulfide in biogas and decreasing release of phosphate into a sludge liquor at WWTPs; water ecosystem protection from antibiotics through the use of AOP methods; tertiary wastewater treatment in bio-filtration systems assisted by the addition of hydrogen peroxide to stimulate microbial activity; odor removal using biological methods; the impact of WWTPs on the environment by taking into account energy consumption, noise, and the formation of bioaerosols; and odor nuisances), which show significant progress in the research and implementation of innovative solutions in wastewater treatment technology.
Research & information: general --- hydrogen peroxide --- high-rate biofiltration --- nitrification --- denitrification --- AOPs --- assessment of ecotoxicity --- fluoroquinolones --- high resolution mass spectrometry --- IC50 --- MIC --- QSAR --- waste ochre --- biogas --- enhanced phosphorus removal --- hydrogen sulfide --- phosphates precipitation --- wastewater treatment plant --- environment --- impact --- life-cycle assessment --- environmental impact assessment --- green building --- environmental management system --- environmental aspects --- wastewater technology --- management tool --- biodegradation --- odors --- H2S --- NH3 --- hydrogen peroxide --- high-rate biofiltration --- nitrification --- denitrification --- AOPs --- assessment of ecotoxicity --- fluoroquinolones --- high resolution mass spectrometry --- IC50 --- MIC --- QSAR --- waste ochre --- biogas --- enhanced phosphorus removal --- hydrogen sulfide --- phosphates precipitation --- wastewater treatment plant --- environment --- impact --- life-cycle assessment --- environmental impact assessment --- green building --- environmental management system --- environmental aspects --- wastewater technology --- management tool --- biodegradation --- odors --- H2S --- NH3
Choose an application
This book presents an introductory editorial paper and publications referring to current problems and challenges in the field of wastewater treatment. The published articles cover a wide range of topics (reducing the concentration of hydrogen sulfide in biogas and decreasing release of phosphate into a sludge liquor at WWTPs; water ecosystem protection from antibiotics through the use of AOP methods; tertiary wastewater treatment in bio-filtration systems assisted by the addition of hydrogen peroxide to stimulate microbial activity; odor removal using biological methods; the impact of WWTPs on the environment by taking into account energy consumption, noise, and the formation of bioaerosols; and odor nuisances), which show significant progress in the research and implementation of innovative solutions in wastewater treatment technology.
Research & information: general --- hydrogen peroxide --- high-rate biofiltration --- nitrification --- denitrification --- AOPs --- assessment of ecotoxicity --- fluoroquinolones --- high resolution mass spectrometry --- IC50 --- MIC --- QSAR --- waste ochre --- biogas --- enhanced phosphorus removal --- hydrogen sulfide --- phosphates precipitation --- wastewater treatment plant --- environment --- impact --- life-cycle assessment --- environmental impact assessment --- green building --- environmental management system --- environmental aspects --- wastewater technology --- management tool --- biodegradation --- odors --- H2S --- NH3 --- n/a
Choose an application
This book presents an introductory editorial paper and publications referring to current problems and challenges in the field of wastewater treatment. The published articles cover a wide range of topics (reducing the concentration of hydrogen sulfide in biogas and decreasing release of phosphate into a sludge liquor at WWTPs; water ecosystem protection from antibiotics through the use of AOP methods; tertiary wastewater treatment in bio-filtration systems assisted by the addition of hydrogen peroxide to stimulate microbial activity; odor removal using biological methods; the impact of WWTPs on the environment by taking into account energy consumption, noise, and the formation of bioaerosols; and odor nuisances), which show significant progress in the research and implementation of innovative solutions in wastewater treatment technology.
hydrogen peroxide --- high-rate biofiltration --- nitrification --- denitrification --- AOPs --- assessment of ecotoxicity --- fluoroquinolones --- high resolution mass spectrometry --- IC50 --- MIC --- QSAR --- waste ochre --- biogas --- enhanced phosphorus removal --- hydrogen sulfide --- phosphates precipitation --- wastewater treatment plant --- environment --- impact --- life-cycle assessment --- environmental impact assessment --- green building --- environmental management system --- environmental aspects --- wastewater technology --- management tool --- biodegradation --- odors --- H2S --- NH3 --- n/a
Choose an application
The progress of society has led to an improvement of the quality of life of a significant number of people. On the other hand, anthropogenic pollution dramatically increased, with serious consequences for the environment and human health. Controlling and remedying environmental pollution is one of the main challenges of our century. Fundamental and applicative research are called to collaborate, involving scientists in the development of realistic and effective systems for the prevention and the removal of pollutants from the environment. Spreading knowledge is among the missions of researchers and this is the aim of this book, offering an updated view on innovative materials and methods for pollutant treatment. It is composed of 18 articles, among them 5 reviews and 13 original articles, dedicated to new adsorbent materials (inorganic, organic, and hybrid materials) for the capture of pollutant species and for their catalytic conversion into non-toxic substances, and to bioremediation approaches to treat contaminated media. Water, air, and soil pollution was investigated, both at the lab and large scale, with special relevance for wastewater treatments for the removal of heavy metals and organic pollutants. We are grateful to “Molecules” for the opportunity to edit the Special Issue on “Innovative Materials and Methods for the Removal of Pollutants from the Environment”. We created, for this book, an original cover image, dedicated to the efforts of chemistry to defend the beauty of environment, represented by flowers, against every prejudice that considers chemistry an enemy of life.
Research & information: general --- Environmental economics --- Pollution control --- green-removal --- tangerine peels activated carbon --- agriculture waste --- acetamiprid pesticide --- enzymatic hydrolysis lignin --- sequential dissolution fractionation --- methylene blue adsorption capacity --- CuFe2O4 nano-particles --- CuFe2O4/PANI composite --- mercury (II) removal --- adsorption --- biochar --- pyrolysis --- heavy metals --- soil remediation --- bioavailability --- biomass waste --- N doped carbon dots --- Cd (II) --- mechanism --- water remedy --- green adsorbents --- pineapple leaves --- rose bengal (RB) dye --- face-centered central composite design (FCCCD), percentage removal (%R) --- adsorption capacity (qe) --- phosphorus removal --- toxic metals --- alginate beads --- sewage sludge --- BC --- sequential extraction --- copper --- carbon-silicon interaction --- bioremediation --- toxic pollutants --- extreme conditions --- extremophilic microorganism --- non-thermal plasma (NTP) --- exhaust emission --- internal combustion engine --- ion chemical reaction --- insensitive munitions --- 3-nitro-1,2,4-triazol-5-one (NTO) --- industrial wastewater --- vetiver grass --- phytoremediation --- phytoextraction --- ammonia --- ammonium recovery --- Freundlich --- intraparticle diffusion --- isoelectric state --- Langmuir --- pseudo-second-order --- Temkin --- zeolite --- high-strength wastewater --- sludge liquor --- chitosan --- adsorbent --- carbon --- graphene oxide --- silica --- magnetic separation --- dyes --- Langmuir isotherm --- breakthrough curve --- defluoridation --- up-flow mode --- volcanic rocks --- toluene --- rhodamine B --- water stability of monolith --- nanosorbent --- regeneration --- α-NiMoO4 --- methylene blue --- removal --- zirconium phosphate --- wastewater pollutants --- ion exchange --- heterogeneous photocatalysis --- nanomaterials --- rare earth metals --- wastewater treatment --- pollutants --- green-removal --- tangerine peels activated carbon --- agriculture waste --- acetamiprid pesticide --- enzymatic hydrolysis lignin --- sequential dissolution fractionation --- methylene blue adsorption capacity --- CuFe2O4 nano-particles --- CuFe2O4/PANI composite --- mercury (II) removal --- adsorption --- biochar --- pyrolysis --- heavy metals --- soil remediation --- bioavailability --- biomass waste --- N doped carbon dots --- Cd (II) --- mechanism --- water remedy --- green adsorbents --- pineapple leaves --- rose bengal (RB) dye --- face-centered central composite design (FCCCD), percentage removal (%R) --- adsorption capacity (qe) --- phosphorus removal --- toxic metals --- alginate beads --- sewage sludge --- BC --- sequential extraction --- copper --- carbon-silicon interaction --- bioremediation --- toxic pollutants --- extreme conditions --- extremophilic microorganism --- non-thermal plasma (NTP) --- exhaust emission --- internal combustion engine --- ion chemical reaction --- insensitive munitions --- 3-nitro-1,2,4-triazol-5-one (NTO) --- industrial wastewater --- vetiver grass --- phytoremediation --- phytoextraction --- ammonia --- ammonium recovery --- Freundlich --- intraparticle diffusion --- isoelectric state --- Langmuir --- pseudo-second-order --- Temkin --- zeolite --- high-strength wastewater --- sludge liquor --- chitosan --- adsorbent --- carbon --- graphene oxide --- silica --- magnetic separation --- dyes --- Langmuir isotherm --- breakthrough curve --- defluoridation --- up-flow mode --- volcanic rocks --- toluene --- rhodamine B --- water stability of monolith --- nanosorbent --- regeneration --- α-NiMoO4 --- methylene blue --- removal --- zirconium phosphate --- wastewater pollutants --- ion exchange --- heterogeneous photocatalysis --- nanomaterials --- rare earth metals --- wastewater treatment --- pollutants
Choose an application
The progress of society has led to an improvement of the quality of life of a significant number of people. On the other hand, anthropogenic pollution dramatically increased, with serious consequences for the environment and human health. Controlling and remedying environmental pollution is one of the main challenges of our century. Fundamental and applicative research are called to collaborate, involving scientists in the development of realistic and effective systems for the prevention and the removal of pollutants from the environment. Spreading knowledge is among the missions of researchers and this is the aim of this book, offering an updated view on innovative materials and methods for pollutant treatment. It is composed of 18 articles, among them 5 reviews and 13 original articles, dedicated to new adsorbent materials (inorganic, organic, and hybrid materials) for the capture of pollutant species and for their catalytic conversion into non-toxic substances, and to bioremediation approaches to treat contaminated media. Water, air, and soil pollution was investigated, both at the lab and large scale, with special relevance for wastewater treatments for the removal of heavy metals and organic pollutants. We are grateful to “Molecules” for the opportunity to edit the Special Issue on “Innovative Materials and Methods for the Removal of Pollutants from the Environment”. We created, for this book, an original cover image, dedicated to the efforts of chemistry to defend the beauty of environment, represented by flowers, against every prejudice that considers chemistry an enemy of life.
green-removal --- tangerine peels activated carbon --- agriculture waste --- acetamiprid pesticide --- enzymatic hydrolysis lignin --- sequential dissolution fractionation --- methylene blue adsorption capacity --- CuFe2O4 nano-particles --- CuFe2O4/PANI composite --- mercury (II) removal --- adsorption --- biochar --- pyrolysis --- heavy metals --- soil remediation --- bioavailability --- biomass waste --- N doped carbon dots --- Cd (II) --- mechanism --- water remedy --- green adsorbents --- pineapple leaves --- rose bengal (RB) dye --- face-centered central composite design (FCCCD), percentage removal (%R) --- adsorption capacity (qe) --- phosphorus removal --- toxic metals --- alginate beads --- sewage sludge --- BC --- sequential extraction --- copper --- carbon-silicon interaction --- bioremediation --- toxic pollutants --- extreme conditions --- extremophilic microorganism --- non-thermal plasma (NTP) --- exhaust emission --- internal combustion engine --- ion chemical reaction --- insensitive munitions --- 3-nitro-1,2,4-triazol-5-one (NTO) --- industrial wastewater --- vetiver grass --- phytoremediation --- phytoextraction --- ammonia --- ammonium recovery --- Freundlich --- intraparticle diffusion --- isoelectric state --- Langmuir --- pseudo-second-order --- Temkin --- zeolite --- high-strength wastewater --- sludge liquor --- chitosan --- adsorbent --- carbon --- graphene oxide --- silica --- magnetic separation --- dyes --- Langmuir isotherm --- breakthrough curve --- defluoridation --- up-flow mode --- volcanic rocks --- toluene --- rhodamine B --- water stability of monolith --- nanosorbent --- regeneration --- α-NiMoO4 --- methylene blue --- removal --- zirconium phosphate --- wastewater pollutants --- ion exchange --- heterogeneous photocatalysis --- nanomaterials --- rare earth metals --- wastewater treatment --- pollutants
Choose an application
Construction materials are the most widely used materials for civil infrastructure in our daily lives. However, from an environmental point of view, they consume a huge amount of natural resources and generate the majority of greenhouse gasses. Therefore, many new and novel technologies for designing environmentally friendly construction materials have been developed recently. This Special Issue, “Environment-Friendly Construction Materials”, has been proposed and organized as a means to present recent developments in the field of construction materials. It covers a wide range of selected topics on construction materials.
fluorescence spectrum --- microstructure --- regeneration --- sensitivity analysis --- asphalt mixes --- limestone aggregates --- bio-oil --- plateau value of dissipated strain energy ratio --- diatomite --- water-leaching pretreatment --- fatigue performance --- ultra-thin wearing course --- recycling aggregate --- design optimization --- induction heating --- vibration noise consumption --- bitumen --- relaxation --- viscous-elastic temperature --- field evaluation --- healing agents --- transmittance --- Ca-alginate microcapsules --- artificially aged asphalt mixture --- sequencing batch Chlorella reactor --- waste concrete --- plant ash lixivium --- steel fiber --- ultra-high performance concrete --- titanate coupling agent --- SEM --- self-healing --- physical properties --- porous pumice --- thermal–mechanical properties --- aggregate morphology --- asphalt mortar --- adhesion energy --- styrene–butadiene–styrene (SBS) modified bitumen --- water solute exposure --- emulsified asphalt --- demulsification speed --- mineral-asphalt mixtures --- aging processes --- phase change materials --- surface texture --- long-term drying shrinkage --- contact angle --- aging depth --- asphalt --- calcium alginate capsules --- nitrogen and phosphorus removal --- micro-morphology --- rice husk ash --- low-temperature --- cement --- hydrophobic nanosilica --- asphalt mixture --- thickness combinations --- layered double hydroxide --- initial self-healing temperature --- environmentally friendly construction materials --- epoxidized soybean oil --- limestone --- chemical evolutions --- temperature sensitivity characteristics --- micro-surfacing --- cement emulsified asphalt mixture --- dynamic characteristics --- high-strength concrete --- flame retardant --- durability --- creep --- damping --- damage constitutive model --- Ultra-High Performance Concrete (UHPC) --- granite aggregate --- diatomite-modified asphalt mixture --- healing model --- asphalt combustion --- freeze-thaw cycle --- SBS-modified bitumen --- workability --- graphene --- flow behavior index --- fluidity --- parametrization --- fatigue property --- rankinite --- railway application --- crystallization sensitivity --- aqueous solute compositions --- pozzolanic reaction --- self-healing asphalt --- recycled material --- artificial neural network --- rheological properties --- molecular dynamic simulation --- building envelopes --- aluminum hydroxide --- crumb rubber --- optimization --- viscoelasticity --- building energy conservation --- diffusing --- anti-rutting agent --- molecular bridge --- engineered cementitious composites (ECC) --- pavement performance --- morphology --- colloidal structure --- hydrophilic nanosilica --- construction materials --- road engineering --- laboratory evaluation --- rejuvenator --- fatigue equation --- aggregates --- three-point bending fatigue test --- energy-based approach --- aggregate from sanitary ceramic wastes --- polyacrylic acid --- mastic --- CO2 --- specific surface area --- aggregate image measurement system --- solubilizer --- flexibility --- simplex lattice design --- SBS/CRP-modified bitumen --- water stability --- fatigue life --- rejuvenating systems --- skid-resistance --- reclaimed asphalt pavement --- rheology --- hydration characteristic --- surface energy --- modified asphalt materials --- asphalt pavement --- stripping test --- SOD --- tensile stresses --- ultraviolet radiation --- basalt fiber --- “blue-shift” --- polyvinyl alcohol --- sanitary ceramics --- dynamic moduli --- aggregate characteristics --- compound modify --- expanded graphite --- steel slag --- induced healing --- thermal property --- effective heating depth --- dissipated strain energy --- MDA --- mechanical behavior --- plateau value of permanent deformation ratio --- long-term field service --- crack healing --- desulphurization gypsum residues --- pavement failure --- rejuvenation --- interfacial transition zone --- combination --- polyethylene glycol --- adsorption --- tensile strains --- cold recycled asphalt mixture --- resistance to deformations --- asphalt-aggregate adhesion --- viscoelastic properties --- damage evolution --- carbonation --- microwave heating --- amorphous silica --- high-modulus asphalt mixture (HMAM) --- hot mix asphalt containing recycled concrete aggregate --- microfluidic --- dynamic responses --- concrete --- asphalt mastic --- crumb rubber powder --- response surface methodology --- nanomaterial --- self-compacting concrete (SCC) --- rutting factor --- X-ray computed tomography --- fiber modification --- overlay tester --- rubber modified asphalt --- ageing --- aged bitumen --- aged asphalt --- recycling --- damage characteristics --- dynamic tests --- permeation --- ageing resistance
Choose an application
Construction materials are the most widely used materials for civil infrastructure in our daily lives. However, from an environmental point of view, they consume a huge amount of natural resources and generate the majority of greenhouse gasses. Therefore, many new and novel technologies for designing environmentally friendly construction materials have been developed recently. This Special Issue, “Environment-Friendly Construction Materials”, has been proposed and organized as a means to present recent developments in the field of construction materials. It covers a wide range of selected topics on construction materials.
fluorescence spectrum --- microstructure --- regeneration --- sensitivity analysis --- asphalt mixes --- limestone aggregates --- bio-oil --- plateau value of dissipated strain energy ratio --- diatomite --- water-leaching pretreatment --- fatigue performance --- ultra-thin wearing course --- recycling aggregate --- design optimization --- induction heating --- vibration noise consumption --- bitumen --- relaxation --- viscous-elastic temperature --- field evaluation --- healing agents --- transmittance --- Ca-alginate microcapsules --- artificially aged asphalt mixture --- sequencing batch Chlorella reactor --- waste concrete --- plant ash lixivium --- steel fiber --- ultra-high performance concrete --- titanate coupling agent --- SEM --- self-healing --- physical properties --- porous pumice --- thermal–mechanical properties --- aggregate morphology --- asphalt mortar --- adhesion energy --- styrene–butadiene–styrene (SBS) modified bitumen --- water solute exposure --- emulsified asphalt --- demulsification speed --- mineral-asphalt mixtures --- aging processes --- phase change materials --- surface texture --- long-term drying shrinkage --- contact angle --- aging depth --- asphalt --- calcium alginate capsules --- nitrogen and phosphorus removal --- micro-morphology --- rice husk ash --- low-temperature --- cement --- hydrophobic nanosilica --- asphalt mixture --- thickness combinations --- layered double hydroxide --- initial self-healing temperature --- environmentally friendly construction materials --- epoxidized soybean oil --- limestone --- chemical evolutions --- temperature sensitivity characteristics --- micro-surfacing --- cement emulsified asphalt mixture --- dynamic characteristics --- high-strength concrete --- flame retardant --- durability --- creep --- damping --- damage constitutive model --- Ultra-High Performance Concrete (UHPC) --- granite aggregate --- diatomite-modified asphalt mixture --- healing model --- asphalt combustion --- freeze-thaw cycle --- SBS-modified bitumen --- workability --- graphene --- flow behavior index --- fluidity --- parametrization --- fatigue property --- rankinite --- railway application --- crystallization sensitivity --- aqueous solute compositions --- pozzolanic reaction --- self-healing asphalt --- recycled material --- artificial neural network --- rheological properties --- molecular dynamic simulation --- building envelopes --- aluminum hydroxide --- crumb rubber --- optimization --- viscoelasticity --- building energy conservation --- diffusing --- anti-rutting agent --- molecular bridge --- engineered cementitious composites (ECC) --- pavement performance --- morphology --- colloidal structure --- hydrophilic nanosilica --- construction materials --- road engineering --- laboratory evaluation --- rejuvenator --- fatigue equation --- aggregates --- three-point bending fatigue test --- energy-based approach --- aggregate from sanitary ceramic wastes --- polyacrylic acid --- mastic --- CO2 --- specific surface area --- aggregate image measurement system --- solubilizer --- flexibility --- simplex lattice design --- SBS/CRP-modified bitumen --- water stability --- fatigue life --- rejuvenating systems --- skid-resistance --- reclaimed asphalt pavement --- rheology --- hydration characteristic --- surface energy --- modified asphalt materials --- asphalt pavement --- stripping test --- SOD --- tensile stresses --- ultraviolet radiation --- basalt fiber --- “blue-shift” --- polyvinyl alcohol --- sanitary ceramics --- dynamic moduli --- aggregate characteristics --- compound modify --- expanded graphite --- steel slag --- induced healing --- thermal property --- effective heating depth --- dissipated strain energy --- MDA --- mechanical behavior --- plateau value of permanent deformation ratio --- long-term field service --- crack healing --- desulphurization gypsum residues --- pavement failure --- rejuvenation --- interfacial transition zone --- combination --- polyethylene glycol --- adsorption --- tensile strains --- cold recycled asphalt mixture --- resistance to deformations --- asphalt-aggregate adhesion --- viscoelastic properties --- damage evolution --- carbonation --- microwave heating --- amorphous silica --- high-modulus asphalt mixture (HMAM) --- hot mix asphalt containing recycled concrete aggregate --- microfluidic --- dynamic responses --- concrete --- asphalt mastic --- crumb rubber powder --- response surface methodology --- nanomaterial --- self-compacting concrete (SCC) --- rutting factor --- X-ray computed tomography --- fiber modification --- overlay tester --- rubber modified asphalt --- ageing --- aged bitumen --- aged asphalt --- recycling --- damage characteristics --- dynamic tests --- permeation --- ageing resistance
Choose an application
Construction materials are the most widely used materials for civil infrastructure in our daily lives. However, from an environmental point of view, they consume a huge amount of natural resources and generate the majority of greenhouse gasses. Therefore, many new and novel technologies for designing environmentally friendly construction materials have been developed recently. This Special Issue, “Environment-Friendly Construction Materials”, has been proposed and organized as a means to present recent developments in the field of construction materials. It covers a wide range of selected topics on construction materials.
fluorescence spectrum --- microstructure --- regeneration --- sensitivity analysis --- asphalt mixes --- limestone aggregates --- bio-oil --- plateau value of dissipated strain energy ratio --- diatomite --- water-leaching pretreatment --- fatigue performance --- ultra-thin wearing course --- recycling aggregate --- design optimization --- induction heating --- vibration noise consumption --- bitumen --- relaxation --- viscous-elastic temperature --- field evaluation --- healing agents --- transmittance --- Ca-alginate microcapsules --- artificially aged asphalt mixture --- sequencing batch Chlorella reactor --- waste concrete --- plant ash lixivium --- steel fiber --- ultra-high performance concrete --- titanate coupling agent --- SEM --- self-healing --- physical properties --- porous pumice --- thermal–mechanical properties --- aggregate morphology --- asphalt mortar --- adhesion energy --- styrene–butadiene–styrene (SBS) modified bitumen --- water solute exposure --- emulsified asphalt --- demulsification speed --- mineral-asphalt mixtures --- aging processes --- phase change materials --- surface texture --- long-term drying shrinkage --- contact angle --- aging depth --- asphalt --- calcium alginate capsules --- nitrogen and phosphorus removal --- micro-morphology --- rice husk ash --- low-temperature --- cement --- hydrophobic nanosilica --- asphalt mixture --- thickness combinations --- layered double hydroxide --- initial self-healing temperature --- environmentally friendly construction materials --- epoxidized soybean oil --- limestone --- chemical evolutions --- temperature sensitivity characteristics --- micro-surfacing --- cement emulsified asphalt mixture --- dynamic characteristics --- high-strength concrete --- flame retardant --- durability --- creep --- damping --- damage constitutive model --- Ultra-High Performance Concrete (UHPC) --- granite aggregate --- diatomite-modified asphalt mixture --- healing model --- asphalt combustion --- freeze-thaw cycle --- SBS-modified bitumen --- workability --- graphene --- flow behavior index --- fluidity --- parametrization --- fatigue property --- rankinite --- railway application --- crystallization sensitivity --- aqueous solute compositions --- pozzolanic reaction --- self-healing asphalt --- recycled material --- artificial neural network --- rheological properties --- molecular dynamic simulation --- building envelopes --- aluminum hydroxide --- crumb rubber --- optimization --- viscoelasticity --- building energy conservation --- diffusing --- anti-rutting agent --- molecular bridge --- engineered cementitious composites (ECC) --- pavement performance --- morphology --- colloidal structure --- hydrophilic nanosilica --- construction materials --- road engineering --- laboratory evaluation --- rejuvenator --- fatigue equation --- aggregates --- three-point bending fatigue test --- energy-based approach --- aggregate from sanitary ceramic wastes --- polyacrylic acid --- mastic --- CO2 --- specific surface area --- aggregate image measurement system --- solubilizer --- flexibility --- simplex lattice design --- SBS/CRP-modified bitumen --- water stability --- fatigue life --- rejuvenating systems --- skid-resistance --- reclaimed asphalt pavement --- rheology --- hydration characteristic --- surface energy --- modified asphalt materials --- asphalt pavement --- stripping test --- SOD --- tensile stresses --- ultraviolet radiation --- basalt fiber --- “blue-shift” --- polyvinyl alcohol --- sanitary ceramics --- dynamic moduli --- aggregate characteristics --- compound modify --- expanded graphite --- steel slag --- induced healing --- thermal property --- effective heating depth --- dissipated strain energy --- MDA --- mechanical behavior --- plateau value of permanent deformation ratio --- long-term field service --- crack healing --- desulphurization gypsum residues --- pavement failure --- rejuvenation --- interfacial transition zone --- combination --- polyethylene glycol --- adsorption --- tensile strains --- cold recycled asphalt mixture --- resistance to deformations --- asphalt-aggregate adhesion --- viscoelastic properties --- damage evolution --- carbonation --- microwave heating --- amorphous silica --- high-modulus asphalt mixture (HMAM) --- hot mix asphalt containing recycled concrete aggregate --- microfluidic --- dynamic responses --- concrete --- asphalt mastic --- crumb rubber powder --- response surface methodology --- nanomaterial --- self-compacting concrete (SCC) --- rutting factor --- X-ray computed tomography --- fiber modification --- overlay tester --- rubber modified asphalt --- ageing --- aged bitumen --- aged asphalt --- recycling --- damage characteristics --- dynamic tests --- permeation --- ageing resistance
Listing 1 - 8 of 8 |
Sort by
|