Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULiège (2)

VIVES (2)

Vlaams Parlement (2)

More...

Resource type

book (5)


Language

English (5)


Year
From To Submit

2021 (3)

2020 (2)

Listing 1 - 5 of 5
Sort by

Book
Genetic and Morphological Variation in Tropical and Temperate Plant Species
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Plants provide the foundation for the structure and function, as well as interactions, among organisms in both tropical and temperate zone habitats. To date, many investigations have revealed patterns and mechanisms generating plant diversity at various scales and from diverse ecological perspectives. However, in the era of climate change, anthropogenic disturbance, and rapid urbanization, new insights are needed to understand how plant species in these forest habitats are changing and adapting. Investigations of plants in both little-disturbed, more natural environments, as well as in urban areas in which crucial green infrastructure is ever more important for sustaining complex human societies are needed. This Special Issue of Forests will focus on plant variation from the perspectives of morphology, genetics, and function, especially plant interactions with biotic and abiotic factors. Research articles may address any aspect of plant evolution and community phylogenetics (explorations of patterns and mechanisms from diverse organismal levels, e.g., molecular, population, species, community, landscape, and ecosystem), plant functional traits (e.g., nutrient traits of leaf, stem, root; reproductive traits of flower, fruit, seed), and/or responses of plant species to changing environments (e.g., water, atmosphere, soil, human activities). Studies providing quantitative evaluation or description of interactions of plants with animals and microbes, both in natural and urban environments, including terrestrial and aquatic systems, are also welcome.

Keywords

Research & information: general --- Biology, life sciences --- Forestry & related industries --- Hevea brasiliensis Müll. Arg. --- HbMad-box genes --- conserved domains --- gene structures --- expression profiles --- stress treatments --- microsatellite locus --- Hardy-Weinberg equilibrium --- genetic differentiation --- breeding population --- artificial selection --- Aegle marmelos (L.) Corr. --- transcripts --- transcriptome assembly --- simple sequence repeats --- transcription factors --- cytochrome p450 --- glycotransferases --- metabolic pathway --- grafting --- pecan --- miRNA --- graft union --- sequencing --- edible forest product --- forest biology --- macro-fungi --- non-timber forest products (NTFPs) --- Pan-Pearl River Delta --- allometry --- anatomy --- Polygonatum odoratum --- Polygonatum multiflorum --- shape --- shoot --- endophytes --- medicinal plants --- pathogen --- molecular identification --- plant-microbe interaction --- gas exchange --- chlorophyll fluorescence --- growth trait --- genetic variation --- early selection --- pedunculate oak --- drought --- stress --- memory --- flushing --- autumn leaf senescence --- phenological shift --- carry-over effect --- mangroves --- DNA barcoding --- species identification --- phylogenetic relation --- moso bamboo --- heat shock factor gene --- abiotic stresses --- co-expression --- yellow-green leaf mutant --- transcriptome --- antenna protein --- photosynthesis --- birch --- Dalbergia odorifera T. Chen --- genetic diversity --- population structure --- EST-SSR marker --- microsatellite marker --- rosewood --- conservation --- Pinus massoniana --- introgression hybrid --- RNA sequencing --- DEGs --- reproduction --- phenology --- leafing out --- flowering --- senescence --- cumulative logistic regression --- hawthorn --- provenance trial --- non-local populations --- variance analysis --- lime application --- understory removal --- microbial community --- forest management --- Eucalyptus --- protogyny (PG) --- protandry (PA) --- pollen viability --- seed success --- polyploidy --- phosphate solubilizing bacteria --- nutrition --- oil tea --- Lagerstroemia species --- simple sequence repeat markers --- bulked segregant analysis --- creeping trait --- plant architecture --- climate change --- forest biodiversity --- plant–environment interactions --- plant traits --- urbanization --- Hevea brasiliensis Müll. Arg. --- HbMad-box genes --- conserved domains --- gene structures --- expression profiles --- stress treatments --- microsatellite locus --- Hardy-Weinberg equilibrium --- genetic differentiation --- breeding population --- artificial selection --- Aegle marmelos (L.) Corr. --- transcripts --- transcriptome assembly --- simple sequence repeats --- transcription factors --- cytochrome p450 --- glycotransferases --- metabolic pathway --- grafting --- pecan --- miRNA --- graft union --- sequencing --- edible forest product --- forest biology --- macro-fungi --- non-timber forest products (NTFPs) --- Pan-Pearl River Delta --- allometry --- anatomy --- Polygonatum odoratum --- Polygonatum multiflorum --- shape --- shoot --- endophytes --- medicinal plants --- pathogen --- molecular identification --- plant-microbe interaction --- gas exchange --- chlorophyll fluorescence --- growth trait --- genetic variation --- early selection --- pedunculate oak --- drought --- stress --- memory --- flushing --- autumn leaf senescence --- phenological shift --- carry-over effect --- mangroves --- DNA barcoding --- species identification --- phylogenetic relation --- moso bamboo --- heat shock factor gene --- abiotic stresses --- co-expression --- yellow-green leaf mutant --- transcriptome --- antenna protein --- photosynthesis --- birch --- Dalbergia odorifera T. Chen --- genetic diversity --- population structure --- EST-SSR marker --- microsatellite marker --- rosewood --- conservation --- Pinus massoniana --- introgression hybrid --- RNA sequencing --- DEGs --- reproduction --- phenology --- leafing out --- flowering --- senescence --- cumulative logistic regression --- hawthorn --- provenance trial --- non-local populations --- variance analysis --- lime application --- understory removal --- microbial community --- forest management --- Eucalyptus --- protogyny (PG) --- protandry (PA) --- pollen viability --- seed success --- polyploidy --- phosphate solubilizing bacteria --- nutrition --- oil tea --- Lagerstroemia species --- simple sequence repeat markers --- bulked segregant analysis --- creeping trait --- plant architecture --- climate change --- forest biodiversity --- plant–environment interactions --- plant traits --- urbanization


Book
Genetic and Morphological Variation in Tropical and Temperate Plant Species
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Plants provide the foundation for the structure and function, as well as interactions, among organisms in both tropical and temperate zone habitats. To date, many investigations have revealed patterns and mechanisms generating plant diversity at various scales and from diverse ecological perspectives. However, in the era of climate change, anthropogenic disturbance, and rapid urbanization, new insights are needed to understand how plant species in these forest habitats are changing and adapting. Investigations of plants in both little-disturbed, more natural environments, as well as in urban areas in which crucial green infrastructure is ever more important for sustaining complex human societies are needed. This Special Issue of Forests will focus on plant variation from the perspectives of morphology, genetics, and function, especially plant interactions with biotic and abiotic factors. Research articles may address any aspect of plant evolution and community phylogenetics (explorations of patterns and mechanisms from diverse organismal levels, e.g., molecular, population, species, community, landscape, and ecosystem), plant functional traits (e.g., nutrient traits of leaf, stem, root; reproductive traits of flower, fruit, seed), and/or responses of plant species to changing environments (e.g., water, atmosphere, soil, human activities). Studies providing quantitative evaluation or description of interactions of plants with animals and microbes, both in natural and urban environments, including terrestrial and aquatic systems, are also welcome.

Keywords

Hevea brasiliensis Müll. Arg. --- HbMad-box genes --- conserved domains --- gene structures --- expression profiles --- stress treatments --- microsatellite locus --- Hardy-Weinberg equilibrium --- genetic differentiation --- breeding population --- artificial selection --- Aegle marmelos (L.) Corr. --- transcripts --- transcriptome assembly --- simple sequence repeats --- transcription factors --- cytochrome p450 --- glycotransferases --- metabolic pathway --- grafting --- pecan --- miRNA --- graft union --- sequencing --- edible forest product --- forest biology --- macro-fungi --- non-timber forest products (NTFPs) --- Pan-Pearl River Delta --- allometry --- anatomy --- Polygonatum odoratum --- Polygonatum multiflorum --- shape --- shoot --- endophytes --- medicinal plants --- pathogen --- molecular identification --- plant-microbe interaction --- gas exchange --- chlorophyll fluorescence --- growth trait --- genetic variation --- early selection --- pedunculate oak --- drought --- stress --- memory --- flushing --- autumn leaf senescence --- phenological shift --- carry-over effect --- mangroves --- DNA barcoding --- species identification --- phylogenetic relation --- moso bamboo --- heat shock factor gene --- abiotic stresses --- co-expression --- yellow-green leaf mutant --- transcriptome --- antenna protein --- photosynthesis --- birch --- Dalbergia odorifera T. Chen --- genetic diversity --- population structure --- EST-SSR marker --- microsatellite marker --- rosewood --- conservation --- Pinus massoniana --- introgression hybrid --- RNA sequencing --- DEGs --- reproduction --- phenology --- leafing out --- flowering --- senescence --- cumulative logistic regression --- hawthorn --- provenance trial --- non-local populations --- variance analysis --- lime application --- understory removal --- microbial community --- forest management --- Eucalyptus --- protogyny (PG) --- protandry (PA) --- pollen viability --- seed success --- polyploidy --- phosphate solubilizing bacteria --- nutrition --- oil tea --- Lagerstroemia species --- simple sequence repeat markers --- bulked segregant analysis --- creeping trait --- plant architecture --- climate change --- forest biodiversity --- plant–environment interactions --- plant traits --- urbanization


Book
Toward a Sustainable Agriculture Through Plant Biostimulants : From Experimental Data to Practical Applications
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Over the past decade, interest in plant biostimulants has been on the rise, compelled by the growing interest of researchers, extension specialists, private industries, and farmers in integrating these products in the array of environmentally friendly tools to secure improved crop performance, nutrient efficiency, product quality, and yield stability. Plant biostimulants include diverse organic and inorganic substances, natural compounds, and/or beneficial microorganisms such as humic acids, protein hydrolysates, seaweed and plant extracts, silicon, endophytic fungi like mycorrhizal fungi, and plant growth-promoting rhizobacteria belonging to the genera Azospirillum, Azotobacter, and Rhizobium. Other substances (e.g., chitosan and other biopolymers and inorganic compounds) can have biostimulant properties, but their classification within the group of biostimulants is still under consideration. Plant biostimulants are usually applied to high-value crops, mainly greenhouse crops, fruit trees and vines, open-field crops, flowers, and ornamentals to sustainably increase yield and product quality. The global biostimulant market is currently estimated at about $2.0 billion and is expected to reach $3.0 billion by 2021 at an annual growth rate of 13%. A growing interest in plant biostimulants from industries and scientists was demonstrated by the high number of published peer-reviewed articles, conferences, workshops, and symposia in the past ten years. This book compiles several original research articles, technology reports, methods, opinions, perspectives, and invited reviews and mini reviews dissecting the biostimulatory action of these natural compounds and substances and beneficial microorganisms on crops grown under optimal and suboptimal growing conditions (e.g., salinity, drought, nutrient deficiency and toxicity, heavy metal contaminations, waterlogging, and adverse soil pH conditions). Also included are contributions dealing with the effect as well as the molecular and physiological mechanisms of plant biostimulants on nutrient efficiency, product quality, and modulation of the microbial population both quantitatively and qualitatively. In addition, identification and understanding of the optimal method, time, rate of application and phenological stage for improving plant performance and resilience to stress as well as the best combinations of plant species/cultivar × environment × management practices are also reported. We strongly believe that high standard reflected in this compilation on the principles and practices of plant biostimulants will foster knowledge transfer among scientific communities, industries, and agronomists, and will enable a better understanding of the mode of action and application procedures of biostimulants in different cropping systems.

Keywords

Research & information: general --- Biology, life sciences --- Technology, engineering, agriculture --- Crocus sativus L. --- biofertilization --- arbuscular mycorrhizal fungi --- antioxidant activity --- crocin --- picrocrocin --- polyphenols --- safranal --- Maize --- biostimulant --- root --- stress --- growth --- gene expression --- stem cuttings --- propagation --- root morphology traits --- indole-3-acetic acid (IAA) --- indole-3-butyric acid (IBA) --- gibberellins --- phenolic compounds --- nutrients --- nutraceutical potential --- soybean --- yield --- N organic fertilizer --- seaweed extract --- mycorrhizal inoculants --- phosphate-solubilizing microorganisms --- biofertilizers --- microorganism consortium --- biostimulants --- Crocus sativus --- Funneliformis mosseae --- glasshouse --- protected cultivation --- Rhizophagus intraradices --- substrate --- L-methionine --- L-tryptophan --- L-glycine --- lettuce --- nitrogen --- plant biostimulant --- environmental stress --- vegetables --- fruit quality --- plants biostimulants --- yielding --- Biostimulants --- Euglena gracilis --- algal polysaccharide --- β-glucan --- water stress --- tomato --- aeroponics --- Zea mays L --- lignohumate --- lignosulfonate --- biological activity --- nitrogen metabolism --- carbon metabolism --- proteins --- phenolics --- sugars --- Ascophyllum nodosum --- Solanum melongena --- heterostyly --- pollination efficiency --- soilless conditions --- abiotic stress --- alfalfa hydrolysate --- chitosan --- zinc --- ascorbic acid --- Fragaria x ananassa --- functional quality --- lycopene --- organic farming --- protein hydrolysate --- Solanum lycopersicum L. --- tropical plant extract --- fertilizer --- melatonin --- phytomelatonin --- plant protector --- plant stress --- Lactuca sativa L. --- legume-derived protein hydrolysate --- nitrate --- Septoria --- wheat --- Paraburkholderia phytofirmans --- thyme essential oil --- isotope --- phytoparasitic nematodes --- suppressiveness --- sustainable management --- anti-nutritional substances --- fat --- fibre --- morphotype --- protein --- corn --- imaging --- industrial crops --- maize --- next generation sequencing --- phenomics --- plant phenotyping --- row crops --- Bacillus subtilis --- carotenoids --- probiotics --- PGPR --- Mentha longifolia --- humic acid --- antioxidants --- arbuscular mycorrhizal symbiosis --- mycorrhizosphere --- AMF associated bacteria --- plant growth-promoting bacteria --- phosphate-solubilizing bacteria --- siderophore production --- soil enzymatic activity --- biological index fertility --- nitrogenase activity --- microelements fertilization (Ti, Si, B, Mo, Zn) --- seed coating --- cover crop --- vermicompost --- growth enhancement --- AM fungi --- PGPB --- water deficit --- common bean --- Glomus spp. --- organic acids --- pod quality --- seaweed extracts --- seed quality --- tocopherols --- total sugars --- bean --- amino acids --- phenols --- flavonoids --- microbial biostimulant --- non-microbial biostimulant --- Lactuca sativa L. var. longifolia --- mineral profile --- physiological mechanism --- photosynthesis --- biocontrol --- plant growth promotion --- soil inoculant --- Trichoderma --- Azotobacter --- Streptomyces --- deproteinized leaf juice --- fermentation --- lactic acid bacteria --- plant nutrition --- antioxidant capacity --- ornamental plants --- N fertilization --- nitrogen use efficiency --- leaf quality --- Spinacia oleracea L. --- sustainable agriculture --- Valerianella locusta L. --- isotopic labeling --- turfgrass --- humic acids --- leaf area index (LAI) --- specific leaf area (SLA) --- Soil Plant Analysis Development (SPAD) index --- tuber yield --- ultrasound-assisted water --- foliar spray --- Pterocladia capillacea --- bio-fertilizer --- growth parameters --- Jew’s Mallow --- CROPWAT model --- eco-friendly practices --- total ascorbic acid --- Mater-Bi® --- mineral composition --- SPAD index --- Bacillus thuringiensis --- Capsicum annuum --- microbiome --- strain-specific primer --- tracking --- sweet basil --- alfalfa brown juice --- biostimulation --- chlorophyll pigments --- histological changes --- humic substances --- protein hydrolysates --- silicon --- arbuscular mycorrhiza --- plant growth promoting rhizobacteria --- macroalgae --- microalgae --- abiotic stresses --- nutrient use efficiency --- physiological mechanisms


Book
Toward a Sustainable Agriculture Through Plant Biostimulants : From Experimental Data to Practical Applications
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Over the past decade, interest in plant biostimulants has been on the rise, compelled by the growing interest of researchers, extension specialists, private industries, and farmers in integrating these products in the array of environmentally friendly tools to secure improved crop performance, nutrient efficiency, product quality, and yield stability. Plant biostimulants include diverse organic and inorganic substances, natural compounds, and/or beneficial microorganisms such as humic acids, protein hydrolysates, seaweed and plant extracts, silicon, endophytic fungi like mycorrhizal fungi, and plant growth-promoting rhizobacteria belonging to the genera Azospirillum, Azotobacter, and Rhizobium. Other substances (e.g., chitosan and other biopolymers and inorganic compounds) can have biostimulant properties, but their classification within the group of biostimulants is still under consideration. Plant biostimulants are usually applied to high-value crops, mainly greenhouse crops, fruit trees and vines, open-field crops, flowers, and ornamentals to sustainably increase yield and product quality. The global biostimulant market is currently estimated at about $2.0 billion and is expected to reach $3.0 billion by 2021 at an annual growth rate of 13%. A growing interest in plant biostimulants from industries and scientists was demonstrated by the high number of published peer-reviewed articles, conferences, workshops, and symposia in the past ten years. This book compiles several original research articles, technology reports, methods, opinions, perspectives, and invited reviews and mini reviews dissecting the biostimulatory action of these natural compounds and substances and beneficial microorganisms on crops grown under optimal and suboptimal growing conditions (e.g., salinity, drought, nutrient deficiency and toxicity, heavy metal contaminations, waterlogging, and adverse soil pH conditions). Also included are contributions dealing with the effect as well as the molecular and physiological mechanisms of plant biostimulants on nutrient efficiency, product quality, and modulation of the microbial population both quantitatively and qualitatively. In addition, identification and understanding of the optimal method, time, rate of application and phenological stage for improving plant performance and resilience to stress as well as the best combinations of plant species/cultivar × environment × management practices are also reported. We strongly believe that high standard reflected in this compilation on the principles and practices of plant biostimulants will foster knowledge transfer among scientific communities, industries, and agronomists, and will enable a better understanding of the mode of action and application procedures of biostimulants in different cropping systems.

Keywords

Crocus sativus L. --- biofertilization --- arbuscular mycorrhizal fungi --- antioxidant activity --- crocin --- picrocrocin --- polyphenols --- safranal --- Maize --- biostimulant --- root --- stress --- growth --- gene expression --- stem cuttings --- propagation --- root morphology traits --- indole-3-acetic acid (IAA) --- indole-3-butyric acid (IBA) --- gibberellins --- phenolic compounds --- nutrients --- nutraceutical potential --- soybean --- yield --- N organic fertilizer --- seaweed extract --- mycorrhizal inoculants --- phosphate-solubilizing microorganisms --- biofertilizers --- microorganism consortium --- biostimulants --- Crocus sativus --- Funneliformis mosseae --- glasshouse --- protected cultivation --- Rhizophagus intraradices --- substrate --- L-methionine --- L-tryptophan --- L-glycine --- lettuce --- nitrogen --- plant biostimulant --- environmental stress --- vegetables --- fruit quality --- plants biostimulants --- yielding --- Biostimulants --- Euglena gracilis --- algal polysaccharide --- β-glucan --- water stress --- tomato --- aeroponics --- Zea mays L --- lignohumate --- lignosulfonate --- biological activity --- nitrogen metabolism --- carbon metabolism --- proteins --- phenolics --- sugars --- Ascophyllum nodosum --- Solanum melongena --- heterostyly --- pollination efficiency --- soilless conditions --- abiotic stress --- alfalfa hydrolysate --- chitosan --- zinc --- ascorbic acid --- Fragaria x ananassa --- functional quality --- lycopene --- organic farming --- protein hydrolysate --- Solanum lycopersicum L. --- tropical plant extract --- fertilizer --- melatonin --- phytomelatonin --- plant protector --- plant stress --- Lactuca sativa L. --- legume-derived protein hydrolysate --- nitrate --- Septoria --- wheat --- Paraburkholderia phytofirmans --- thyme essential oil --- isotope --- phytoparasitic nematodes --- suppressiveness --- sustainable management --- anti-nutritional substances --- fat --- fibre --- morphotype --- protein --- corn --- imaging --- industrial crops --- maize --- next generation sequencing --- phenomics --- plant phenotyping --- row crops --- Bacillus subtilis --- carotenoids --- probiotics --- PGPR --- Mentha longifolia --- humic acid --- antioxidants --- arbuscular mycorrhizal symbiosis --- mycorrhizosphere --- AMF associated bacteria --- plant growth-promoting bacteria --- phosphate-solubilizing bacteria --- siderophore production --- soil enzymatic activity --- biological index fertility --- nitrogenase activity --- microelements fertilization (Ti, Si, B, Mo, Zn) --- seed coating --- cover crop --- vermicompost --- growth enhancement --- AM fungi --- PGPB --- water deficit --- common bean --- Glomus spp. --- organic acids --- pod quality --- seaweed extracts --- seed quality --- tocopherols --- total sugars --- bean --- amino acids --- phenols --- flavonoids --- microbial biostimulant --- non-microbial biostimulant --- Lactuca sativa L. var. longifolia --- mineral profile --- physiological mechanism --- photosynthesis --- biocontrol --- plant growth promotion --- soil inoculant --- Trichoderma --- Azotobacter --- Streptomyces --- deproteinized leaf juice --- fermentation --- lactic acid bacteria --- plant nutrition --- antioxidant capacity --- ornamental plants --- N fertilization --- nitrogen use efficiency --- leaf quality --- Spinacia oleracea L. --- sustainable agriculture --- Valerianella locusta L. --- isotopic labeling --- turfgrass --- humic acids --- leaf area index (LAI) --- specific leaf area (SLA) --- Soil Plant Analysis Development (SPAD) index --- tuber yield --- ultrasound-assisted water --- foliar spray --- Pterocladia capillacea --- bio-fertilizer --- growth parameters --- Jew’s Mallow --- CROPWAT model --- eco-friendly practices --- total ascorbic acid --- Mater-Bi® --- mineral composition --- SPAD index --- Bacillus thuringiensis --- Capsicum annuum --- microbiome --- strain-specific primer --- tracking --- sweet basil --- alfalfa brown juice --- biostimulation --- chlorophyll pigments --- histological changes --- humic substances --- protein hydrolysates --- silicon --- arbuscular mycorrhiza --- plant growth promoting rhizobacteria --- macroalgae --- microalgae --- abiotic stresses --- nutrient use efficiency --- physiological mechanisms


Book
Toward a Sustainable Agriculture Through Plant Biostimulants : From Experimental Data to Practical Applications
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Over the past decade, interest in plant biostimulants has been on the rise, compelled by the growing interest of researchers, extension specialists, private industries, and farmers in integrating these products in the array of environmentally friendly tools to secure improved crop performance, nutrient efficiency, product quality, and yield stability. Plant biostimulants include diverse organic and inorganic substances, natural compounds, and/or beneficial microorganisms such as humic acids, protein hydrolysates, seaweed and plant extracts, silicon, endophytic fungi like mycorrhizal fungi, and plant growth-promoting rhizobacteria belonging to the genera Azospirillum, Azotobacter, and Rhizobium. Other substances (e.g., chitosan and other biopolymers and inorganic compounds) can have biostimulant properties, but their classification within the group of biostimulants is still under consideration. Plant biostimulants are usually applied to high-value crops, mainly greenhouse crops, fruit trees and vines, open-field crops, flowers, and ornamentals to sustainably increase yield and product quality. The global biostimulant market is currently estimated at about $2.0 billion and is expected to reach $3.0 billion by 2021 at an annual growth rate of 13%. A growing interest in plant biostimulants from industries and scientists was demonstrated by the high number of published peer-reviewed articles, conferences, workshops, and symposia in the past ten years. This book compiles several original research articles, technology reports, methods, opinions, perspectives, and invited reviews and mini reviews dissecting the biostimulatory action of these natural compounds and substances and beneficial microorganisms on crops grown under optimal and suboptimal growing conditions (e.g., salinity, drought, nutrient deficiency and toxicity, heavy metal contaminations, waterlogging, and adverse soil pH conditions). Also included are contributions dealing with the effect as well as the molecular and physiological mechanisms of plant biostimulants on nutrient efficiency, product quality, and modulation of the microbial population both quantitatively and qualitatively. In addition, identification and understanding of the optimal method, time, rate of application and phenological stage for improving plant performance and resilience to stress as well as the best combinations of plant species/cultivar × environment × management practices are also reported. We strongly believe that high standard reflected in this compilation on the principles and practices of plant biostimulants will foster knowledge transfer among scientific communities, industries, and agronomists, and will enable a better understanding of the mode of action and application procedures of biostimulants in different cropping systems.

Keywords

Research & information: general --- Biology, life sciences --- Technology, engineering, agriculture --- Crocus sativus L. --- biofertilization --- arbuscular mycorrhizal fungi --- antioxidant activity --- crocin --- picrocrocin --- polyphenols --- safranal --- Maize --- biostimulant --- root --- stress --- growth --- gene expression --- stem cuttings --- propagation --- root morphology traits --- indole-3-acetic acid (IAA) --- indole-3-butyric acid (IBA) --- gibberellins --- phenolic compounds --- nutrients --- nutraceutical potential --- soybean --- yield --- N organic fertilizer --- seaweed extract --- mycorrhizal inoculants --- phosphate-solubilizing microorganisms --- biofertilizers --- microorganism consortium --- biostimulants --- Crocus sativus --- Funneliformis mosseae --- glasshouse --- protected cultivation --- Rhizophagus intraradices --- substrate --- L-methionine --- L-tryptophan --- L-glycine --- lettuce --- nitrogen --- plant biostimulant --- environmental stress --- vegetables --- fruit quality --- plants biostimulants --- yielding --- Biostimulants --- Euglena gracilis --- algal polysaccharide --- β-glucan --- water stress --- tomato --- aeroponics --- Zea mays L --- lignohumate --- lignosulfonate --- biological activity --- nitrogen metabolism --- carbon metabolism --- proteins --- phenolics --- sugars --- Ascophyllum nodosum --- Solanum melongena --- heterostyly --- pollination efficiency --- soilless conditions --- abiotic stress --- alfalfa hydrolysate --- chitosan --- zinc --- ascorbic acid --- Fragaria x ananassa --- functional quality --- lycopene --- organic farming --- protein hydrolysate --- Solanum lycopersicum L. --- tropical plant extract --- fertilizer --- melatonin --- phytomelatonin --- plant protector --- plant stress --- Lactuca sativa L. --- legume-derived protein hydrolysate --- nitrate --- Septoria --- wheat --- Paraburkholderia phytofirmans --- thyme essential oil --- isotope --- phytoparasitic nematodes --- suppressiveness --- sustainable management --- anti-nutritional substances --- fat --- fibre --- morphotype --- protein --- corn --- imaging --- industrial crops --- maize --- next generation sequencing --- phenomics --- plant phenotyping --- row crops --- Bacillus subtilis --- carotenoids --- probiotics --- PGPR --- Mentha longifolia --- humic acid --- antioxidants --- arbuscular mycorrhizal symbiosis --- mycorrhizosphere --- AMF associated bacteria --- plant growth-promoting bacteria --- phosphate-solubilizing bacteria --- siderophore production --- soil enzymatic activity --- biological index fertility --- nitrogenase activity --- microelements fertilization (Ti, Si, B, Mo, Zn) --- seed coating --- cover crop --- vermicompost --- growth enhancement --- AM fungi --- PGPB --- water deficit --- common bean --- Glomus spp. --- organic acids --- pod quality --- seaweed extracts --- seed quality --- tocopherols --- total sugars --- bean --- amino acids --- phenols --- flavonoids --- microbial biostimulant --- non-microbial biostimulant --- Lactuca sativa L. var. longifolia --- mineral profile --- physiological mechanism --- photosynthesis --- biocontrol --- plant growth promotion --- soil inoculant --- Trichoderma --- Azotobacter --- Streptomyces --- deproteinized leaf juice --- fermentation --- lactic acid bacteria --- plant nutrition --- antioxidant capacity --- ornamental plants --- N fertilization --- nitrogen use efficiency --- leaf quality --- Spinacia oleracea L. --- sustainable agriculture --- Valerianella locusta L. --- isotopic labeling --- turfgrass --- humic acids --- leaf area index (LAI) --- specific leaf area (SLA) --- Soil Plant Analysis Development (SPAD) index --- tuber yield --- ultrasound-assisted water --- foliar spray --- Pterocladia capillacea --- bio-fertilizer --- growth parameters --- Jew’s Mallow --- CROPWAT model --- eco-friendly practices --- total ascorbic acid --- Mater-Bi® --- mineral composition --- SPAD index --- Bacillus thuringiensis --- Capsicum annuum --- microbiome --- strain-specific primer --- tracking --- sweet basil --- alfalfa brown juice --- biostimulation --- chlorophyll pigments --- histological changes --- humic substances --- protein hydrolysates --- silicon --- arbuscular mycorrhiza --- plant growth promoting rhizobacteria --- macroalgae --- microalgae --- abiotic stresses --- nutrient use efficiency --- physiological mechanisms --- Crocus sativus L. --- biofertilization --- arbuscular mycorrhizal fungi --- antioxidant activity --- crocin --- picrocrocin --- polyphenols --- safranal --- Maize --- biostimulant --- root --- stress --- growth --- gene expression --- stem cuttings --- propagation --- root morphology traits --- indole-3-acetic acid (IAA) --- indole-3-butyric acid (IBA) --- gibberellins --- phenolic compounds --- nutrients --- nutraceutical potential --- soybean --- yield --- N organic fertilizer --- seaweed extract --- mycorrhizal inoculants --- phosphate-solubilizing microorganisms --- biofertilizers --- microorganism consortium --- biostimulants --- Crocus sativus --- Funneliformis mosseae --- glasshouse --- protected cultivation --- Rhizophagus intraradices --- substrate --- L-methionine --- L-tryptophan --- L-glycine --- lettuce --- nitrogen --- plant biostimulant --- environmental stress --- vegetables --- fruit quality --- plants biostimulants --- yielding --- Biostimulants --- Euglena gracilis --- algal polysaccharide --- β-glucan --- water stress --- tomato --- aeroponics --- Zea mays L --- lignohumate --- lignosulfonate --- biological activity --- nitrogen metabolism --- carbon metabolism --- proteins --- phenolics --- sugars --- Ascophyllum nodosum --- Solanum melongena --- heterostyly --- pollination efficiency --- soilless conditions --- abiotic stress --- alfalfa hydrolysate --- chitosan --- zinc --- ascorbic acid --- Fragaria x ananassa --- functional quality --- lycopene --- organic farming --- protein hydrolysate --- Solanum lycopersicum L. --- tropical plant extract --- fertilizer --- melatonin --- phytomelatonin --- plant protector --- plant stress --- Lactuca sativa L. --- legume-derived protein hydrolysate --- nitrate --- Septoria --- wheat --- Paraburkholderia phytofirmans --- thyme essential oil --- isotope --- phytoparasitic nematodes --- suppressiveness --- sustainable management --- anti-nutritional substances --- fat --- fibre --- morphotype --- protein --- corn --- imaging --- industrial crops --- maize --- next generation sequencing --- phenomics --- plant phenotyping --- row crops --- Bacillus subtilis --- carotenoids --- probiotics --- PGPR --- Mentha longifolia --- humic acid --- antioxidants --- arbuscular mycorrhizal symbiosis --- mycorrhizosphere --- AMF associated bacteria --- plant growth-promoting bacteria --- phosphate-solubilizing bacteria --- siderophore production --- soil enzymatic activity --- biological index fertility --- nitrogenase activity --- microelements fertilization (Ti, Si, B, Mo, Zn) --- seed coating --- cover crop --- vermicompost --- growth enhancement --- AM fungi --- PGPB --- water deficit --- common bean --- Glomus spp. --- organic acids --- pod quality --- seaweed extracts --- seed quality --- tocopherols --- total sugars --- bean --- amino acids --- phenols --- flavonoids --- microbial biostimulant --- non-microbial biostimulant --- Lactuca sativa L. var. longifolia --- mineral profile --- physiological mechanism --- photosynthesis --- biocontrol --- plant growth promotion --- soil inoculant --- Trichoderma --- Azotobacter --- Streptomyces --- deproteinized leaf juice --- fermentation --- lactic acid bacteria --- plant nutrition --- antioxidant capacity --- ornamental plants --- N fertilization --- nitrogen use efficiency --- leaf quality --- Spinacia oleracea L. --- sustainable agriculture --- Valerianella locusta L. --- isotopic labeling --- turfgrass --- humic acids --- leaf area index (LAI) --- specific leaf area (SLA) --- Soil Plant Analysis Development (SPAD) index --- tuber yield --- ultrasound-assisted water --- foliar spray --- Pterocladia capillacea --- bio-fertilizer --- growth parameters --- Jew’s Mallow --- CROPWAT model --- eco-friendly practices --- total ascorbic acid --- Mater-Bi® --- mineral composition --- SPAD index --- Bacillus thuringiensis --- Capsicum annuum --- microbiome --- strain-specific primer --- tracking --- sweet basil --- alfalfa brown juice --- biostimulation --- chlorophyll pigments --- histological changes --- humic substances --- protein hydrolysates --- silicon --- arbuscular mycorrhiza --- plant growth promoting rhizobacteria --- macroalgae --- microalgae --- abiotic stresses --- nutrient use efficiency --- physiological mechanisms

Listing 1 - 5 of 5
Sort by