Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (6)


Language

English (6)


Year
From To Submit

2021 (6)

Listing 1 - 6 of 6
Sort by

Book
Thermal and Electro-thermal System Simulation 2020
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book, edited by Prof. Marta Rencz and Prof Andras Poppe, Budapest University of Technology and Economics, and by Prof. Lorenzo Codecasa, Politecnico di Milano, collects fourteen papers carefully selected for the “thermal and electro-thermal system simulation” Special Issue of Energies. These contributions present the latest results in a currently very “hot” topic in electronics: the thermal and electro-thermal simulation of electronic components and systems. Several papers here proposed have turned out to be extended versions of papers presented at THERMINIC 2019, which was one of the 2019 stages of choice for presenting outstanding contributions on thermal and electro-thermal simulation of electronic systems. The papers proposed to the thermal community in this book deal with modeling and simulation of state-of-the-art applications which are highly critical from the thermal point of view, and around which there is great research activity in both industry and academia. In particular, contributions are proposed on the multi-physics simulation of families of electronic packages, multi-physics advanced modeling in power electronics, multiphysics modeling and simulation of LEDs, batteries and other micro and nano-structures.

Keywords

History of engineering & technology --- lithium-ion battery --- thermal modelling --- electro-thermal model --- heat generation --- experimental validation --- thermal transient testing --- non-destructive testing --- thermal testability --- accuracy repeatability and reproducibility of thermal measurements --- thermal testing standards --- 3D IC --- microchannels --- liquid cooling --- compact thermal model --- thermal simulation --- hotspot --- thermal-aware task scheduling --- DVFS --- statistical analysis --- electronic packages --- detailed thermal model --- Joint Electron Device Engineering Council (JEDEC) metrics --- thermal impedance --- AlGaN-GaN HEMT --- TDTR --- thermal conductivity --- thermal interface resistance --- size effect --- phonon transport mechanisms --- nonlinear thermal model --- SPICE --- pulse transformer --- thermal phenomena --- self-heating --- modelling --- measurements --- BCI-DCTM --- ROM --- modal approach --- BGA --- module temperature --- solar energy --- heat transfer mechanisms --- power LED measurement and simulation --- life testing --- reliability testing --- LM-80 --- TM-21 --- LED lifetime modelling --- LED multi-domain modelling --- Spice-like modelling of LEDs --- lifetime extrapolation and modelling of LEDs --- beyond CMOS --- VO2 --- thermal-electronic circuits --- electro-thermal simulation --- vertical structure --- power LEDs --- thermal pads --- thermal resistance --- optical efficiency --- electronics cooling --- Light-emitting diodes --- CoB LEDs --- multi-domain modeling --- finite volume method --- phosphor modeling --- magnetic nanoparticle --- microfluidics --- CFD --- OpenFOAM --- two-phase solver --- rheology --- LED --- Delphi4LED --- digital twin --- digital luminaire design --- computation time --- Industry 4.0


Book
Quantum Transport in Mesoscopic Systems
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Mesoscopic physics deals with systems larger than single atoms but small enough to retain their quantum properties. The possibility to create and manipulate conductors of the nanometer scale has given birth to a set of phenomena that have revolutionized physics: quantum Hall effects, persistent currents, weak localization, Coulomb blockade, etc. This Special Issue tackles the latest developments in the field. Contributors discuss time-dependent transport, quantum pumping, nanoscale heat engines and motors, molecular junctions, electron–electron correlations in confined systems, quantum thermo-electrics and current fluctuations. The works included herein represent an up-to-date account of exciting research with a broad impact in both fundamental and applied topics.

Keywords

Technology: general issues --- quantum transport --- quantum interference --- shot noise --- persistent current --- mesoscale and nanoscale physics --- Complementary Metal Oxide Semiconductor (CMOS) technology --- electron quantum optics --- photo-assisted noise --- charge and heat fluctuations --- time-dependent transport --- electron–photon coupling --- open quantum systems --- phonon transport --- nanostructured materials --- green’s functions --- density-functional tight binding --- Landauer approach, time-dependent transport --- graphene nanoribbons --- nonequilibrium Green’s function --- electronic transport --- thermal transport --- strongly correlated systems --- Landauer-Büttiker formalism --- Boltzmann transport equation --- time-dependent density functional theory --- electron–phonon coupling --- molecular junctions --- thermoelectric properties --- electron–vibration interactions --- electron–electron interactions --- thermoelectricity --- heat engines --- mesoscopic physics --- fluctuations --- thermodynamic uncertainty relations --- quantum thermodynamics --- steady-state dynamics --- nonlinear transport --- adiabatic quantum motors --- adiabatic quantum pumps --- quantum heat engines --- quantum refrigerators --- transport through quantum dots --- spin pump --- spin-orbit interaction --- quantum adiabatic pump --- interferometer --- geometric phase --- nonadiabaticity --- quantum heat pumping --- spin pumping --- relaxation --- time evolution --- quantum information --- entropy production --- Renyi entropy --- superconducting proximity effect --- Kondo effect --- spin polarization --- Anreev reflection --- conditional states --- conditional wavefunction --- Markovian and Non-Markovian dynamics --- stochastic Schrödinger equation --- quantum electron transport --- quantum dots --- fluctuation–dissipation theorem --- Onsager relations --- dynamics of strongly correlated quantum systems --- quantum capacitor --- local fermi liquids --- kondo effect --- coulomb blockade --- mesoscopic systems --- nanophysics --- quantum noise --- quantum pumping --- thermoelectrics --- heat transport


Book
Quantum Transport in Mesoscopic Systems
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Mesoscopic physics deals with systems larger than single atoms but small enough to retain their quantum properties. The possibility to create and manipulate conductors of the nanometer scale has given birth to a set of phenomena that have revolutionized physics: quantum Hall effects, persistent currents, weak localization, Coulomb blockade, etc. This Special Issue tackles the latest developments in the field. Contributors discuss time-dependent transport, quantum pumping, nanoscale heat engines and motors, molecular junctions, electron–electron correlations in confined systems, quantum thermo-electrics and current fluctuations. The works included herein represent an up-to-date account of exciting research with a broad impact in both fundamental and applied topics.

Keywords

quantum transport --- quantum interference --- shot noise --- persistent current --- mesoscale and nanoscale physics --- Complementary Metal Oxide Semiconductor (CMOS) technology --- electron quantum optics --- photo-assisted noise --- charge and heat fluctuations --- time-dependent transport --- electron–photon coupling --- open quantum systems --- phonon transport --- nanostructured materials --- green’s functions --- density-functional tight binding --- Landauer approach, time-dependent transport --- graphene nanoribbons --- nonequilibrium Green’s function --- electronic transport --- thermal transport --- strongly correlated systems --- Landauer-Büttiker formalism --- Boltzmann transport equation --- time-dependent density functional theory --- electron–phonon coupling --- molecular junctions --- thermoelectric properties --- electron–vibration interactions --- electron–electron interactions --- thermoelectricity --- heat engines --- mesoscopic physics --- fluctuations --- thermodynamic uncertainty relations --- quantum thermodynamics --- steady-state dynamics --- nonlinear transport --- adiabatic quantum motors --- adiabatic quantum pumps --- quantum heat engines --- quantum refrigerators --- transport through quantum dots --- spin pump --- spin-orbit interaction --- quantum adiabatic pump --- interferometer --- geometric phase --- nonadiabaticity --- quantum heat pumping --- spin pumping --- relaxation --- time evolution --- quantum information --- entropy production --- Renyi entropy --- superconducting proximity effect --- Kondo effect --- spin polarization --- Anreev reflection --- conditional states --- conditional wavefunction --- Markovian and Non-Markovian dynamics --- stochastic Schrödinger equation --- quantum electron transport --- quantum dots --- fluctuation–dissipation theorem --- Onsager relations --- dynamics of strongly correlated quantum systems --- quantum capacitor --- local fermi liquids --- kondo effect --- coulomb blockade --- mesoscopic systems --- nanophysics --- quantum noise --- quantum pumping --- thermoelectrics --- heat transport


Book
Thermal and Electro-thermal System Simulation 2020
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book, edited by Prof. Marta Rencz and Prof Andras Poppe, Budapest University of Technology and Economics, and by Prof. Lorenzo Codecasa, Politecnico di Milano, collects fourteen papers carefully selected for the “thermal and electro-thermal system simulation” Special Issue of Energies. These contributions present the latest results in a currently very “hot” topic in electronics: the thermal and electro-thermal simulation of electronic components and systems. Several papers here proposed have turned out to be extended versions of papers presented at THERMINIC 2019, which was one of the 2019 stages of choice for presenting outstanding contributions on thermal and electro-thermal simulation of electronic systems. The papers proposed to the thermal community in this book deal with modeling and simulation of state-of-the-art applications which are highly critical from the thermal point of view, and around which there is great research activity in both industry and academia. In particular, contributions are proposed on the multi-physics simulation of families of electronic packages, multi-physics advanced modeling in power electronics, multiphysics modeling and simulation of LEDs, batteries and other micro and nano-structures.

Keywords

lithium-ion battery --- thermal modelling --- electro-thermal model --- heat generation --- experimental validation --- thermal transient testing --- non-destructive testing --- thermal testability --- accuracy repeatability and reproducibility of thermal measurements --- thermal testing standards --- 3D IC --- microchannels --- liquid cooling --- compact thermal model --- thermal simulation --- hotspot --- thermal-aware task scheduling --- DVFS --- statistical analysis --- electronic packages --- detailed thermal model --- Joint Electron Device Engineering Council (JEDEC) metrics --- thermal impedance --- AlGaN-GaN HEMT --- TDTR --- thermal conductivity --- thermal interface resistance --- size effect --- phonon transport mechanisms --- nonlinear thermal model --- SPICE --- pulse transformer --- thermal phenomena --- self-heating --- modelling --- measurements --- BCI-DCTM --- ROM --- modal approach --- BGA --- module temperature --- solar energy --- heat transfer mechanisms --- power LED measurement and simulation --- life testing --- reliability testing --- LM-80 --- TM-21 --- LED lifetime modelling --- LED multi-domain modelling --- Spice-like modelling of LEDs --- lifetime extrapolation and modelling of LEDs --- beyond CMOS --- VO2 --- thermal-electronic circuits --- electro-thermal simulation --- vertical structure --- power LEDs --- thermal pads --- thermal resistance --- optical efficiency --- electronics cooling --- Light-emitting diodes --- CoB LEDs --- multi-domain modeling --- finite volume method --- phosphor modeling --- magnetic nanoparticle --- microfluidics --- CFD --- OpenFOAM --- two-phase solver --- rheology --- LED --- Delphi4LED --- digital twin --- digital luminaire design --- computation time --- Industry 4.0


Book
Thermal and Electro-thermal System Simulation 2020
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book, edited by Prof. Marta Rencz and Prof Andras Poppe, Budapest University of Technology and Economics, and by Prof. Lorenzo Codecasa, Politecnico di Milano, collects fourteen papers carefully selected for the “thermal and electro-thermal system simulation” Special Issue of Energies. These contributions present the latest results in a currently very “hot” topic in electronics: the thermal and electro-thermal simulation of electronic components and systems. Several papers here proposed have turned out to be extended versions of papers presented at THERMINIC 2019, which was one of the 2019 stages of choice for presenting outstanding contributions on thermal and electro-thermal simulation of electronic systems. The papers proposed to the thermal community in this book deal with modeling and simulation of state-of-the-art applications which are highly critical from the thermal point of view, and around which there is great research activity in both industry and academia. In particular, contributions are proposed on the multi-physics simulation of families of electronic packages, multi-physics advanced modeling in power electronics, multiphysics modeling and simulation of LEDs, batteries and other micro and nano-structures.

Keywords

History of engineering & technology --- lithium-ion battery --- thermal modelling --- electro-thermal model --- heat generation --- experimental validation --- thermal transient testing --- non-destructive testing --- thermal testability --- accuracy repeatability and reproducibility of thermal measurements --- thermal testing standards --- 3D IC --- microchannels --- liquid cooling --- compact thermal model --- thermal simulation --- hotspot --- thermal-aware task scheduling --- DVFS --- statistical analysis --- electronic packages --- detailed thermal model --- Joint Electron Device Engineering Council (JEDEC) metrics --- thermal impedance --- AlGaN-GaN HEMT --- TDTR --- thermal conductivity --- thermal interface resistance --- size effect --- phonon transport mechanisms --- nonlinear thermal model --- SPICE --- pulse transformer --- thermal phenomena --- self-heating --- modelling --- measurements --- BCI-DCTM --- ROM --- modal approach --- BGA --- module temperature --- solar energy --- heat transfer mechanisms --- power LED measurement and simulation --- life testing --- reliability testing --- LM-80 --- TM-21 --- LED lifetime modelling --- LED multi-domain modelling --- Spice-like modelling of LEDs --- lifetime extrapolation and modelling of LEDs --- beyond CMOS --- VO2 --- thermal-electronic circuits --- electro-thermal simulation --- vertical structure --- power LEDs --- thermal pads --- thermal resistance --- optical efficiency --- electronics cooling --- Light-emitting diodes --- CoB LEDs --- multi-domain modeling --- finite volume method --- phosphor modeling --- magnetic nanoparticle --- microfluidics --- CFD --- OpenFOAM --- two-phase solver --- rheology --- LED --- Delphi4LED --- digital twin --- digital luminaire design --- computation time --- Industry 4.0


Book
Quantum Transport in Mesoscopic Systems
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Mesoscopic physics deals with systems larger than single atoms but small enough to retain their quantum properties. The possibility to create and manipulate conductors of the nanometer scale has given birth to a set of phenomena that have revolutionized physics: quantum Hall effects, persistent currents, weak localization, Coulomb blockade, etc. This Special Issue tackles the latest developments in the field. Contributors discuss time-dependent transport, quantum pumping, nanoscale heat engines and motors, molecular junctions, electron–electron correlations in confined systems, quantum thermo-electrics and current fluctuations. The works included herein represent an up-to-date account of exciting research with a broad impact in both fundamental and applied topics.

Keywords

Technology: general issues --- quantum transport --- quantum interference --- shot noise --- persistent current --- mesoscale and nanoscale physics --- Complementary Metal Oxide Semiconductor (CMOS) technology --- electron quantum optics --- photo-assisted noise --- charge and heat fluctuations --- time-dependent transport --- electron–photon coupling --- open quantum systems --- phonon transport --- nanostructured materials --- green’s functions --- density-functional tight binding --- Landauer approach, time-dependent transport --- graphene nanoribbons --- nonequilibrium Green’s function --- electronic transport --- thermal transport --- strongly correlated systems --- Landauer-Büttiker formalism --- Boltzmann transport equation --- time-dependent density functional theory --- electron–phonon coupling --- molecular junctions --- thermoelectric properties --- electron–vibration interactions --- electron–electron interactions --- thermoelectricity --- heat engines --- mesoscopic physics --- fluctuations --- thermodynamic uncertainty relations --- quantum thermodynamics --- steady-state dynamics --- nonlinear transport --- adiabatic quantum motors --- adiabatic quantum pumps --- quantum heat engines --- quantum refrigerators --- transport through quantum dots --- spin pump --- spin-orbit interaction --- quantum adiabatic pump --- interferometer --- geometric phase --- nonadiabaticity --- quantum heat pumping --- spin pumping --- relaxation --- time evolution --- quantum information --- entropy production --- Renyi entropy --- superconducting proximity effect --- Kondo effect --- spin polarization --- Anreev reflection --- conditional states --- conditional wavefunction --- Markovian and Non-Markovian dynamics --- stochastic Schrödinger equation --- quantum electron transport --- quantum dots --- fluctuation–dissipation theorem --- Onsager relations --- dynamics of strongly correlated quantum systems --- quantum capacitor --- local fermi liquids --- kondo effect --- coulomb blockade --- mesoscopic systems --- nanophysics --- quantum noise --- quantum pumping --- thermoelectrics --- heat transport

Listing 1 - 6 of 6
Sort by