Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (6)


Language

English (6)


Year
From To Submit

2021 (3)

2020 (3)

Listing 1 - 6 of 6
Sort by

Book
Advanced DC-DC Power Converters and Switching Converters
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Nowadays, power electronics is an enabling technology in the energy development scenario. Furthermore, power electronics is strictly linked with several fields of technological growth, such as consumer electronics, IT and communications, electrical networks, utilities, industrial drives and robotics, and transportation and automotive sectors. Moreover, the widespread use of power electronics enables cost savings and minimization of losses in several technology applications required for sustainable economic growth. The topologies of DC–DC power converters and switching converters are under continuous development and deserve special attention to highlight the advantages and disadvantages for use increasingly oriented towards green and sustainable development. DC–DC converter topologies are developed in consideration of higher efficiency, reliable control switching strategies, and fault-tolerant configurations. Several types of switching converter topologies are involved in isolated DC–DC converter and nonisolated DC–DC converter solutions operating in hard-switching and soft-switching conditions. Switching converters have applications in a broad range of areas in both low and high power densities. The articles presented in the Special Issue titled "Advanced DC-DC Power Converters and Switching Converters" consolidate the work on the investigation of the switching converter topology considering the technological advances offered by innovative wide-bandgap devices and performance optimization methods in control strategies used.

Keywords

History of engineering & technology --- interleaved operation --- three-winding coupled inductor --- high step-up DC–DC converter --- DC/DC converter --- multi-input-port --- bidirectional --- energy storage --- three-phase bidirectional isolated DC-DC converter --- burst-mode switching --- high-frequency transformer configurations --- phase-shift modulation --- intermittent switching --- three-phase dual-active bridge --- bidirectional converter --- high efficiency --- GaN --- SiC --- buck-boost converter --- high switching frequency --- electric vehicle (EV) --- fast charging --- interleaved dc–dc converter --- SiC devices --- Si devices --- Component Connection Method --- power electronics-based systems --- stability analysis --- state-space methods --- virtual synchronous generators --- DC-DC converters --- photovoltaics --- single-diode model --- state-space --- multi-port dual-active bridge (DAB) converter --- wide-band-gap (WBG) semiconductors --- silicon carbide (SiC) MOSFETs --- power converter --- automotive --- battery charger --- circuit modelling --- power electronics --- SiC MOSFET --- interleaved operation --- three-winding coupled inductor --- high step-up DC–DC converter --- DC/DC converter --- multi-input-port --- bidirectional --- energy storage --- three-phase bidirectional isolated DC-DC converter --- burst-mode switching --- high-frequency transformer configurations --- phase-shift modulation --- intermittent switching --- three-phase dual-active bridge --- bidirectional converter --- high efficiency --- GaN --- SiC --- buck-boost converter --- high switching frequency --- electric vehicle (EV) --- fast charging --- interleaved dc–dc converter --- SiC devices --- Si devices --- Component Connection Method --- power electronics-based systems --- stability analysis --- state-space methods --- virtual synchronous generators --- DC-DC converters --- photovoltaics --- single-diode model --- state-space --- multi-port dual-active bridge (DAB) converter --- wide-band-gap (WBG) semiconductors --- silicon carbide (SiC) MOSFETs --- power converter --- automotive --- battery charger --- circuit modelling --- power electronics --- SiC MOSFET


Book
Advanced DC-DC Power Converters and Switching Converters
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Nowadays, power electronics is an enabling technology in the energy development scenario. Furthermore, power electronics is strictly linked with several fields of technological growth, such as consumer electronics, IT and communications, electrical networks, utilities, industrial drives and robotics, and transportation and automotive sectors. Moreover, the widespread use of power electronics enables cost savings and minimization of losses in several technology applications required for sustainable economic growth. The topologies of DC–DC power converters and switching converters are under continuous development and deserve special attention to highlight the advantages and disadvantages for use increasingly oriented towards green and sustainable development. DC–DC converter topologies are developed in consideration of higher efficiency, reliable control switching strategies, and fault-tolerant configurations. Several types of switching converter topologies are involved in isolated DC–DC converter and nonisolated DC–DC converter solutions operating in hard-switching and soft-switching conditions. Switching converters have applications in a broad range of areas in both low and high power densities. The articles presented in the Special Issue titled "Advanced DC-DC Power Converters and Switching Converters" consolidate the work on the investigation of the switching converter topology considering the technological advances offered by innovative wide-bandgap devices and performance optimization methods in control strategies used.


Book
Advanced DC-DC Power Converters and Switching Converters
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Nowadays, power electronics is an enabling technology in the energy development scenario. Furthermore, power electronics is strictly linked with several fields of technological growth, such as consumer electronics, IT and communications, electrical networks, utilities, industrial drives and robotics, and transportation and automotive sectors. Moreover, the widespread use of power electronics enables cost savings and minimization of losses in several technology applications required for sustainable economic growth. The topologies of DC–DC power converters and switching converters are under continuous development and deserve special attention to highlight the advantages and disadvantages for use increasingly oriented towards green and sustainable development. DC–DC converter topologies are developed in consideration of higher efficiency, reliable control switching strategies, and fault-tolerant configurations. Several types of switching converter topologies are involved in isolated DC–DC converter and nonisolated DC–DC converter solutions operating in hard-switching and soft-switching conditions. Switching converters have applications in a broad range of areas in both low and high power densities. The articles presented in the Special Issue titled "Advanced DC-DC Power Converters and Switching Converters" consolidate the work on the investigation of the switching converter topology considering the technological advances offered by innovative wide-bandgap devices and performance optimization methods in control strategies used.


Book
Industrial Applications of Power Electronics
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In recent years, power electronics have been intensely contributing to the development and evolution of new structures for the processing of energy. They can be used in a wide range of applications ranging from power systems and electrical machines to electric vehicles and robot arm drives. In conjunction with the evolution of microprocessors and advanced control theories, power electronics are playing an increasingly essential role in our society. Thus, in order to cope with the obstacles lying ahead, this book presents a collection of original studies and modeling methods which were developed and published in the field of electrical energy conditioning and control by using circuits and electronic devices, with an emphasis on power applications and industrial control. Researchers have contributed 19 selected and peer-reviewed papers covering a wide range of topics by addressing a wide variety of themes, such as motor drives, AC–DC and DC–DC converters, multilevel converters, varistors, and electromagnetic compatibility, among others. The overall result is a book that represents a cohesive collection of inter-/multidisciplinary works regarding the industrial applications of power electronics.

Keywords

History of engineering & technology --- Energy industries & utilities --- failure mode --- impulse current --- microstructure --- multiple lightning --- ZnO varistors --- multilevel matrix converter --- rotating voltage space vector --- common move voltage --- space vector pulse width modulation --- venturini control method --- electric vehicle --- electromagnetic compatibility --- electromagnetic topology --- radiated emission --- nonlinear effects --- three-level neutral-point clamped inverter --- induction motor --- speed observation --- compensation --- impedance-source inverter --- shoot-through --- dc-dc converter --- dc-ac converter --- DC-DC power converter --- Takagi–Sugeno fuzzy system --- hierarchical binary tree --- circuit breaker --- fault current limiter --- current source circuit --- voltage clamping --- constant current control --- frequency domain electromagnetic --- weighted factor --- model predictive flux control --- interior permanent magnet synchronous --- discrete space vector modulation --- microgrid protection --- power quality --- fault current --- H bridge --- look-up table --- interpolation error --- PMSM drive --- circulating current control --- modular multilevel converter (MMC) --- static synchronous compensator (STATCOM) --- asymmetric --- capacitors --- multilevel inverter --- power electronics --- self-charging --- virtual DC links --- full-bridge converter --- phase shift modulation --- supercapacitors --- isolated DC-DC bidirectional converter --- electrostatic discharge (ESD) --- elliptical-cylinder type --- human-body model (HBM) --- n-channel lateral-diffused MOSFET (nLDMOS) --- super-junction (SJ) --- ultra high-voltage (UHV) --- aging characteristics --- energy absorption --- boost inverter --- single source --- low components --- PMBLDC motor --- fuzzy-logic controller design --- common mode inverters --- photovoltaic --- leakage current elimination --- pulse width modulation --- power converters --- electrical machines --- power grid stability analysis --- inverters --- power supplies --- multilevel converters --- motor drives --- power semiconductor devices --- Tara / Neutral Junction (Central NT SF53-06)


Book
Industrial Applications of Power Electronics
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In recent years, power electronics have been intensely contributing to the development and evolution of new structures for the processing of energy. They can be used in a wide range of applications ranging from power systems and electrical machines to electric vehicles and robot arm drives. In conjunction with the evolution of microprocessors and advanced control theories, power electronics are playing an increasingly essential role in our society. Thus, in order to cope with the obstacles lying ahead, this book presents a collection of original studies and modeling methods which were developed and published in the field of electrical energy conditioning and control by using circuits and electronic devices, with an emphasis on power applications and industrial control. Researchers have contributed 19 selected and peer-reviewed papers covering a wide range of topics by addressing a wide variety of themes, such as motor drives, AC–DC and DC–DC converters, multilevel converters, varistors, and electromagnetic compatibility, among others. The overall result is a book that represents a cohesive collection of inter-/multidisciplinary works regarding the industrial applications of power electronics.

Keywords

failure mode --- impulse current --- microstructure --- multiple lightning --- ZnO varistors --- multilevel matrix converter --- rotating voltage space vector --- common move voltage --- space vector pulse width modulation --- venturini control method --- electric vehicle --- electromagnetic compatibility --- electromagnetic topology --- radiated emission --- nonlinear effects --- three-level neutral-point clamped inverter --- induction motor --- speed observation --- compensation --- impedance-source inverter --- shoot-through --- dc-dc converter --- dc-ac converter --- DC-DC power converter --- Takagi–Sugeno fuzzy system --- hierarchical binary tree --- circuit breaker --- fault current limiter --- current source circuit --- voltage clamping --- constant current control --- frequency domain electromagnetic --- weighted factor --- model predictive flux control --- interior permanent magnet synchronous --- discrete space vector modulation --- microgrid protection --- power quality --- fault current --- H bridge --- look-up table --- interpolation error --- PMSM drive --- circulating current control --- modular multilevel converter (MMC) --- static synchronous compensator (STATCOM) --- asymmetric --- capacitors --- multilevel inverter --- power electronics --- self-charging --- virtual DC links --- full-bridge converter --- phase shift modulation --- supercapacitors --- isolated DC-DC bidirectional converter --- electrostatic discharge (ESD) --- elliptical-cylinder type --- human-body model (HBM) --- n-channel lateral-diffused MOSFET (nLDMOS) --- super-junction (SJ) --- ultra high-voltage (UHV) --- aging characteristics --- energy absorption --- boost inverter --- single source --- low components --- PMBLDC motor --- fuzzy-logic controller design --- common mode inverters --- photovoltaic --- leakage current elimination --- pulse width modulation --- power converters --- electrical machines --- power grid stability analysis --- inverters --- power supplies --- multilevel converters --- motor drives --- power semiconductor devices --- Tara / Neutral Junction (Central NT SF53-06)


Book
Industrial Applications of Power Electronics
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In recent years, power electronics have been intensely contributing to the development and evolution of new structures for the processing of energy. They can be used in a wide range of applications ranging from power systems and electrical machines to electric vehicles and robot arm drives. In conjunction with the evolution of microprocessors and advanced control theories, power electronics are playing an increasingly essential role in our society. Thus, in order to cope with the obstacles lying ahead, this book presents a collection of original studies and modeling methods which were developed and published in the field of electrical energy conditioning and control by using circuits and electronic devices, with an emphasis on power applications and industrial control. Researchers have contributed 19 selected and peer-reviewed papers covering a wide range of topics by addressing a wide variety of themes, such as motor drives, AC–DC and DC–DC converters, multilevel converters, varistors, and electromagnetic compatibility, among others. The overall result is a book that represents a cohesive collection of inter-/multidisciplinary works regarding the industrial applications of power electronics.

Keywords

History of engineering & technology --- Energy industries & utilities --- failure mode --- impulse current --- microstructure --- multiple lightning --- ZnO varistors --- multilevel matrix converter --- rotating voltage space vector --- common move voltage --- space vector pulse width modulation --- venturini control method --- electric vehicle --- electromagnetic compatibility --- electromagnetic topology --- radiated emission --- nonlinear effects --- three-level neutral-point clamped inverter --- induction motor --- speed observation --- compensation --- impedance-source inverter --- shoot-through --- dc-dc converter --- dc-ac converter --- DC-DC power converter --- Takagi–Sugeno fuzzy system --- hierarchical binary tree --- circuit breaker --- fault current limiter --- current source circuit --- voltage clamping --- constant current control --- frequency domain electromagnetic --- weighted factor --- model predictive flux control --- interior permanent magnet synchronous --- discrete space vector modulation --- microgrid protection --- power quality --- fault current --- H bridge --- look-up table --- interpolation error --- PMSM drive --- circulating current control --- modular multilevel converter (MMC) --- static synchronous compensator (STATCOM) --- asymmetric --- capacitors --- multilevel inverter --- power electronics --- self-charging --- virtual DC links --- full-bridge converter --- phase shift modulation --- supercapacitors --- isolated DC-DC bidirectional converter --- electrostatic discharge (ESD) --- elliptical-cylinder type --- human-body model (HBM) --- n-channel lateral-diffused MOSFET (nLDMOS) --- super-junction (SJ) --- ultra high-voltage (UHV) --- aging characteristics --- energy absorption --- boost inverter --- single source --- low components --- PMBLDC motor --- fuzzy-logic controller design --- common mode inverters --- photovoltaic --- leakage current elimination --- pulse width modulation --- power converters --- electrical machines --- power grid stability analysis --- inverters --- power supplies --- multilevel converters --- motor drives --- power semiconductor devices --- Tara / Neutral Junction (Central NT SF53-06)

Listing 1 - 6 of 6
Sort by