Narrow your search

Library

FARO (3)

KU Leuven (3)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

ULB (3)

ULiège (3)

VIVES (3)

More...

Resource type

book (5)


Language

English (5)


Year
From To Submit

2022 (2)

2021 (3)

Listing 1 - 5 of 5
Sort by

Book
Phase-field Modeling of Phase Changes and Mechanical Stresses in Electrode Particles of Secondary Batteries
Author:
Year: 2021 Publisher: Karlsruhe KIT Scientific Publishing

Loading...
Export citation

Choose an application

Bookmark

Abstract

Most storage materials exhibit phase changes, which cause stresses and, thus, lead to damage of the electrode particles. In this work, a phase-field model for the cathode material NaxFePO4 of Na-ion batteries is studied to understand phase changes and stress evolution. Furthermore, we study the particle size and SOC dependent miscibility gap of the nanoscale insertion materials. Finally, we introduce the nonlocal species concentration theory, and show how the nonlocality influences the results.


Book
Phase-field Modeling of Phase Changes and Mechanical Stresses in Electrode Particles of Secondary Batteries
Author:
Year: 2021 Publisher: Karlsruhe KIT Scientific Publishing

Loading...
Export citation

Choose an application

Bookmark

Abstract

Most storage materials exhibit phase changes, which cause stresses and, thus, lead to damage of the electrode particles. In this work, a phase-field model for the cathode material NaxFePO4 of Na-ion batteries is studied to understand phase changes and stress evolution. Furthermore, we study the particle size and SOC dependent miscibility gap of the nanoscale insertion materials. Finally, we introduce the nonlocal species concentration theory, and show how the nonlocality influences the results.


Book
Phase-field Modeling of Phase Changes and Mechanical Stresses in Electrode Particles of Secondary Batteries
Author:
Year: 2021 Publisher: Karlsruhe KIT Scientific Publishing

Loading...
Export citation

Choose an application

Bookmark

Abstract

Most storage materials exhibit phase changes, which cause stresses and, thus, lead to damage of the electrode particles. In this work, a phase-field model for the cathode material NaxFePO4 of Na-ion batteries is studied to understand phase changes and stress evolution. Furthermore, we study the particle size and SOC dependent miscibility gap of the nanoscale insertion materials. Finally, we introduce the nonlocal species concentration theory, and show how the nonlocality influences the results.


Book
Dedication to Professor Michael Tribelsky : 50 Years in Physics
Authors: --- ---
ISBN: 3036556389 3036556370 Year: 2022 Publisher: Basel : MDPI - Multidisciplinary Digital Publishing Institute,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Professor Tribelsky's accomplishments are highly appreciated by the international community. The best indications of this are the high citation rates of his publications, and the numerous awards and titles he has received. He has made numerous fundamental contributions to an extremely broad area of physics and mathematics, including (but not limited to) quantum solid-state physics, various problems in light–matter interaction, liquid crystals, physical hydrodynamics, nonlinear waves, pattern formation in nonequilibrium systems and transition to chaos, bifurcation and probability theory, and even predictions of the dynamics of actual market prices. This book presents several extensions of his results, based on his inspiring publications.


Book
Nanoscale Ferroic Materials—Ferroelectric, Piezoelectric, Magnetic, and Multiferroic Materials
Authors: --- ---
ISBN: 3036559442 3036559434 Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Ferroic materials, including ferroelectric, piezoelectric, magnetic, and multiferroic materials, are receiving great scientific attention due to their rich physical properties. They have shown their great advantages in diverse fields of application, such as information storage, sensor/actuator/transducers, energy harvesters/storage, and even environmental pollution control. At present, ferroic nanostructures have been widely acknowledged to advance and improve currently existing electronic devices as well as to develop future ones. This Special Issue covers the characterization of crystal and microstructure, the design and tailoring of ferro/piezo/dielectric, magnetic, and multiferroic properties, and the presentation of related applications. These papers present various kinds of nanomaterials, such as ferroelectric/piezoelectric thin films, dielectric storage thin film, dielectric gate layer, and magnonic metamaterials. These nanomaterials are expected to have applications in ferroelectric non-volatile memory, ferroelectric tunneling junction memory, energy-storage pulsed-power capacitors, metal oxide semiconductor field-effect-transistor devices, humidity sensors, environmental pollutant remediation, and spin-wave devices. The purpose of this Special Issue is to communicate the recent developments in research on nanoscale ferroic materials.

Listing 1 - 5 of 5
Sort by