Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULiège (2)

VIVES (2)

Vlaams Parlement (2)

More...

Resource type

book (5)


Language

English (5)


Year
From To Submit

2021 (2)

2020 (3)

Listing 1 - 5 of 5
Sort by

Book
Brain Asymmetry in Evolution
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In higher mammals, including primates and carnivores, the asymmetrical aspects of brain morphology and function have been shown to be species-related, sex-related, and subject to individual diversity, and are associated with cognition, emotion, language, preference of hand/paw use, and numerous other aspects. Disturbance of the brain lateralization is involved in human neurodevelopmental disorders with cognitive impairments, social deficits, and/or specific language impairments. Asymmetric development may be essential to the evolution of the brain in acquiring higher and/or more diverse functions. The purpose of this Special Issue on “Brain Asymmetry in Evolution” is to highlight morphological and functional lateralization of the brain in various species of mammals toward understanding the evolution of the brain.


Book
Brain Asymmetry in Evolution
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In higher mammals, including primates and carnivores, the asymmetrical aspects of brain morphology and function have been shown to be species-related, sex-related, and subject to individual diversity, and are associated with cognition, emotion, language, preference of hand/paw use, and numerous other aspects. Disturbance of the brain lateralization is involved in human neurodevelopmental disorders with cognitive impairments, social deficits, and/or specific language impairments. Asymmetric development may be essential to the evolution of the brain in acquiring higher and/or more diverse functions. The purpose of this Special Issue on “Brain Asymmetry in Evolution” is to highlight morphological and functional lateralization of the brain in various species of mammals toward understanding the evolution of the brain.


Book
Radiolabelled Molecules for Brain Imaging with PET and SPECT
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Positron emission tomography (PET) and single-photon emission computed tomography (SPECT) are in vivo molecular imaging methods which are widely used in nuclear medicine for diagnosis and treatment follow-up of many major diseases. These methods use target-specific molecules as probes, which are labeled with radionuclides of short half-lives that are synthesized prior to the imaging studies. These probes are called radiopharmaceuticals. The use of PET and SPECT for brain imaging is of special significance since the brain controls all the body’s functions by processing information from the whole body and the outside world. It is the source of thoughts, intelligence, memory, speech, creativity, emotion, sensory functions, motion control, and other important body functions. Protected by the skull and the blood–brain barrier, the brain is somehow a privileged organ with regard to nutrient supply, immune response, and accessibility for diagnostic and therapeutic measures. Invasive procedures are rather limited for the latter purposes. Therefore, noninvasive imaging with PET and SPECT has gained high importance for a great variety of brain diseases, including neurodegenerative diseases, motor dysfunctions, stroke, epilepsy, psychiatric diseases, and brain tumors. This Special Issue focuses on radiolabeled molecules that are used for these purposes, with special emphasis on neurodegenerative diseases and brain tumors.


Book
Radiolabelled Molecules for Brain Imaging with PET and SPECT
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Positron emission tomography (PET) and single-photon emission computed tomography (SPECT) are in vivo molecular imaging methods which are widely used in nuclear medicine for diagnosis and treatment follow-up of many major diseases. These methods use target-specific molecules as probes, which are labeled with radionuclides of short half-lives that are synthesized prior to the imaging studies. These probes are called radiopharmaceuticals. The use of PET and SPECT for brain imaging is of special significance since the brain controls all the body’s functions by processing information from the whole body and the outside world. It is the source of thoughts, intelligence, memory, speech, creativity, emotion, sensory functions, motion control, and other important body functions. Protected by the skull and the blood–brain barrier, the brain is somehow a privileged organ with regard to nutrient supply, immune response, and accessibility for diagnostic and therapeutic measures. Invasive procedures are rather limited for the latter purposes. Therefore, noninvasive imaging with PET and SPECT has gained high importance for a great variety of brain diseases, including neurodegenerative diseases, motor dysfunctions, stroke, epilepsy, psychiatric diseases, and brain tumors. This Special Issue focuses on radiolabeled molecules that are used for these purposes, with special emphasis on neurodegenerative diseases and brain tumors.


Book
Radiolabelled Molecules for Brain Imaging with PET and SPECT
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Positron emission tomography (PET) and single-photon emission computed tomography (SPECT) are in vivo molecular imaging methods which are widely used in nuclear medicine for diagnosis and treatment follow-up of many major diseases. These methods use target-specific molecules as probes, which are labeled with radionuclides of short half-lives that are synthesized prior to the imaging studies. These probes are called radiopharmaceuticals. The use of PET and SPECT for brain imaging is of special significance since the brain controls all the body’s functions by processing information from the whole body and the outside world. It is the source of thoughts, intelligence, memory, speech, creativity, emotion, sensory functions, motion control, and other important body functions. Protected by the skull and the blood–brain barrier, the brain is somehow a privileged organ with regard to nutrient supply, immune response, and accessibility for diagnostic and therapeutic measures. Invasive procedures are rather limited for the latter purposes. Therefore, noninvasive imaging with PET and SPECT has gained high importance for a great variety of brain diseases, including neurodegenerative diseases, motor dysfunctions, stroke, epilepsy, psychiatric diseases, and brain tumors. This Special Issue focuses on radiolabeled molecules that are used for these purposes, with special emphasis on neurodegenerative diseases and brain tumors.

Keywords

Research & information: general --- Biology, life sciences --- SV2A --- SV2B --- SV2C --- microPET --- [18F]UCB-H --- epilepsy --- PBIF --- distribution volume --- blocking assay --- preclinical imaging --- Alzheimer’s disease (AD) --- network measure --- graph theory --- brain network --- positron emission tomography (PET) --- persistent homology --- Phosphodiesterase 2A (PDE2A) --- Positron Emission Tomography (PET) --- Benzoimidazotriazine (BIT) --- fluorinated --- Mouse Liver Microsomes (MLM) --- cyclic nucleotide phosphodiesterase --- PDE2A radioligand --- nitro-precursor --- fluorine-18 --- in vitro autoradiography --- PET imaging --- opioid receptors --- positron emission tomography --- radiotracers --- μOR-, δOR-, κOR- and ORL1-ligands --- movement disorders --- pain --- drug dependence --- GBM --- biomarkers --- Sigma 1 --- Sigma 2 --- PD-L1 --- PARP --- IDH --- Alzheimer’s disease --- Parkinson’s disease --- β-amyloid plaques --- neurofibrillary tangles --- α-synucleinopathy --- diagnostic imaging probes --- orexin receptors --- PET --- radiotracer --- imaging --- alpha 7 --- nicotinic acetylcholine receptors --- nAChR --- autoradiography --- amino acid --- FET --- FACBC --- FDOPA --- immunoPET --- molecular imaging --- glioma --- brain metastases --- adenosine A2A receptor --- rotenone-based mouse model --- [18F]FESCH --- two-step one-pot radiosynthesis --- SV2A --- SV2B --- SV2C --- microPET --- [18F]UCB-H --- epilepsy --- PBIF --- distribution volume --- blocking assay --- preclinical imaging --- Alzheimer’s disease (AD) --- network measure --- graph theory --- brain network --- positron emission tomography (PET) --- persistent homology --- Phosphodiesterase 2A (PDE2A) --- Positron Emission Tomography (PET) --- Benzoimidazotriazine (BIT) --- fluorinated --- Mouse Liver Microsomes (MLM) --- cyclic nucleotide phosphodiesterase --- PDE2A radioligand --- nitro-precursor --- fluorine-18 --- in vitro autoradiography --- PET imaging --- opioid receptors --- positron emission tomography --- radiotracers --- μOR-, δOR-, κOR- and ORL1-ligands --- movement disorders --- pain --- drug dependence --- GBM --- biomarkers --- Sigma 1 --- Sigma 2 --- PD-L1 --- PARP --- IDH --- Alzheimer’s disease --- Parkinson’s disease --- β-amyloid plaques --- neurofibrillary tangles --- α-synucleinopathy --- diagnostic imaging probes --- orexin receptors --- PET --- radiotracer --- imaging --- alpha 7 --- nicotinic acetylcholine receptors --- nAChR --- autoradiography --- amino acid --- FET --- FACBC --- FDOPA --- immunoPET --- molecular imaging --- glioma --- brain metastases --- adenosine A2A receptor --- rotenone-based mouse model --- [18F]FESCH --- two-step one-pot radiosynthesis

Listing 1 - 5 of 5
Sort by