Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (4)


Language

English (4)


Year
From To Submit

2022 (3)

2019 (1)

Listing 1 - 4 of 4
Sort by

Book
PPARs in Cellular and Whole Body Energy Metabolism
Authors: ---
ISBN: 3038974625 3038974617 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

At no other time in its history has humankind been as concerned about good health. Lifestyle habits are promoted as indispensable allies for the daily prevention against so-called metabolic diseases. Paradoxically, the world has never been so obese, while the beauty canons have never been so skinny! However, there is more to energy balance than alterations in body weight. In the 1990s, it was found that fatty acids not only function as fuel molecules only, but also serve as signaling molecules. They bind nuclear hormone receptors, the Peroxisome Proliferator-Activated Receptors, commonly referred to by the acronym PPARs. PPARs are transcription factors that directly control the expression of genes of metabolism, thereby impacting a multitude of pathways crucial for whole body physiology. PPARs are also activated by synthetic agonists, which are drugs used for lowering triglycerides and blood sugar. This book features articles that address tools for the identification of novel PPAR ligands, as well as the roles of the receptors in several organs, such as the brain, heart, liver, adipose tissue, gut, and muscle. As such, this book documents the multifaceted roles of these nuclear receptors that continue to attract significant attention, not least because of their still not fully realized potential to treat several health conditions.


Book
The Role of PPARs in Disease
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This reprint combines recent original manuscripts and reviews covering the multiple functions of peroxisome proliferator-activated receptors in physiology and pathophysiology. Potential applications and limitations of PPAR agonists and antagonists are discussed. All original contributions were published in Cells.

Keywords

Medicine --- Physiology --- peroxisome-proliferator activated receptors --- tumor angiogenesis --- tumor progression --- metastasis formation --- endothelial cells --- RNA sequencing --- PPARs --- toxicology --- pharmacology --- ligand --- vascular --- coronary artery --- lipidomics --- eicosanoids --- inflammation --- CYP450 --- peroxisome proliferator-activated receptor --- angiogenesis --- proliferation --- metastasis --- immortality --- resistance to cell death --- growth suppressors --- immune system --- cellular metabolism --- PPAR --- nuclear receptors --- addiction --- alcohol --- nicotine --- opioids --- psychostimulants --- animal models --- human studies --- Alzheimer’s --- risk factors --- PPARα --- lipids --- fatty acids --- modulators --- cognition --- sex --- therapy --- hypertrophic adipocytes --- PPARG isoforms --- PPARG splicing --- dominant-negative isoform --- in vitro adipocytes --- adipogenesis --- hypertrophic obesity --- insulin-resistance --- peroxisome proliferator-activated receptors (PPARs) --- synthetic agonists --- non-alcoholic fatty liver disease (NAFLD) --- non-alcoholic steatohepatitis (NASH) --- fibrosis --- Sirtuin1 --- peroxisome proliferator-activated receptor-γ coactivator-1α --- peroxisome proliferator activated receptors --- obesity --- metabolic syndrome --- vitamin B12 --- folate --- fetal programming --- inherited metabolic disorders --- PGC-1α, disease --- kidney --- cancer --- AKI --- CKD --- nephron --- PKD --- cilia --- cystogenesis --- ligands --- Alzheimer’s disease (AD)


Book
The Role of PPARs in Disease
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This reprint combines recent original manuscripts and reviews covering the multiple functions of peroxisome proliferator-activated receptors in physiology and pathophysiology. Potential applications and limitations of PPAR agonists and antagonists are discussed. All original contributions were published in Cells.

Keywords

peroxisome-proliferator activated receptors --- tumor angiogenesis --- tumor progression --- metastasis formation --- endothelial cells --- RNA sequencing --- PPARs --- toxicology --- pharmacology --- ligand --- vascular --- coronary artery --- lipidomics --- eicosanoids --- inflammation --- CYP450 --- peroxisome proliferator-activated receptor --- angiogenesis --- proliferation --- metastasis --- immortality --- resistance to cell death --- growth suppressors --- immune system --- cellular metabolism --- PPAR --- nuclear receptors --- addiction --- alcohol --- nicotine --- opioids --- psychostimulants --- animal models --- human studies --- Alzheimer’s --- risk factors --- PPARα --- lipids --- fatty acids --- modulators --- cognition --- sex --- therapy --- hypertrophic adipocytes --- PPARG isoforms --- PPARG splicing --- dominant-negative isoform --- in vitro adipocytes --- adipogenesis --- hypertrophic obesity --- insulin-resistance --- peroxisome proliferator-activated receptors (PPARs) --- synthetic agonists --- non-alcoholic fatty liver disease (NAFLD) --- non-alcoholic steatohepatitis (NASH) --- fibrosis --- Sirtuin1 --- peroxisome proliferator-activated receptor-γ coactivator-1α --- peroxisome proliferator activated receptors --- obesity --- metabolic syndrome --- vitamin B12 --- folate --- fetal programming --- inherited metabolic disorders --- PGC-1α, disease --- kidney --- cancer --- AKI --- CKD --- nephron --- PKD --- cilia --- cystogenesis --- ligands --- Alzheimer’s disease (AD)


Book
The Role of PPARs in Disease
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This reprint combines recent original manuscripts and reviews covering the multiple functions of peroxisome proliferator-activated receptors in physiology and pathophysiology. Potential applications and limitations of PPAR agonists and antagonists are discussed. All original contributions were published in Cells.

Keywords

Medicine --- Physiology --- peroxisome-proliferator activated receptors --- tumor angiogenesis --- tumor progression --- metastasis formation --- endothelial cells --- RNA sequencing --- PPARs --- toxicology --- pharmacology --- ligand --- vascular --- coronary artery --- lipidomics --- eicosanoids --- inflammation --- CYP450 --- peroxisome proliferator-activated receptor --- angiogenesis --- proliferation --- metastasis --- immortality --- resistance to cell death --- growth suppressors --- immune system --- cellular metabolism --- PPAR --- nuclear receptors --- addiction --- alcohol --- nicotine --- opioids --- psychostimulants --- animal models --- human studies --- Alzheimer’s --- risk factors --- PPARα --- lipids --- fatty acids --- modulators --- cognition --- sex --- therapy --- hypertrophic adipocytes --- PPARG isoforms --- PPARG splicing --- dominant-negative isoform --- in vitro adipocytes --- adipogenesis --- hypertrophic obesity --- insulin-resistance --- peroxisome proliferator-activated receptors (PPARs) --- synthetic agonists --- non-alcoholic fatty liver disease (NAFLD) --- non-alcoholic steatohepatitis (NASH) --- fibrosis --- Sirtuin1 --- peroxisome proliferator-activated receptor-γ coactivator-1α --- peroxisome proliferator activated receptors --- obesity --- metabolic syndrome --- vitamin B12 --- folate --- fetal programming --- inherited metabolic disorders --- PGC-1α, disease --- kidney --- cancer --- AKI --- CKD --- nephron --- PKD --- cilia --- cystogenesis --- ligands --- Alzheimer’s disease (AD) --- peroxisome-proliferator activated receptors --- tumor angiogenesis --- tumor progression --- metastasis formation --- endothelial cells --- RNA sequencing --- PPARs --- toxicology --- pharmacology --- ligand --- vascular --- coronary artery --- lipidomics --- eicosanoids --- inflammation --- CYP450 --- peroxisome proliferator-activated receptor --- angiogenesis --- proliferation --- metastasis --- immortality --- resistance to cell death --- growth suppressors --- immune system --- cellular metabolism --- PPAR --- nuclear receptors --- addiction --- alcohol --- nicotine --- opioids --- psychostimulants --- animal models --- human studies --- Alzheimer’s --- risk factors --- PPARα --- lipids --- fatty acids --- modulators --- cognition --- sex --- therapy --- hypertrophic adipocytes --- PPARG isoforms --- PPARG splicing --- dominant-negative isoform --- in vitro adipocytes --- adipogenesis --- hypertrophic obesity --- insulin-resistance --- peroxisome proliferator-activated receptors (PPARs) --- synthetic agonists --- non-alcoholic fatty liver disease (NAFLD) --- non-alcoholic steatohepatitis (NASH) --- fibrosis --- Sirtuin1 --- peroxisome proliferator-activated receptor-γ coactivator-1α --- peroxisome proliferator activated receptors --- obesity --- metabolic syndrome --- vitamin B12 --- folate --- fetal programming --- inherited metabolic disorders --- PGC-1α, disease --- kidney --- cancer --- AKI --- CKD --- nephron --- PKD --- cilia --- cystogenesis --- ligands --- Alzheimer’s disease (AD)

Listing 1 - 4 of 4
Sort by