Listing 1 - 6 of 6 |
Sort by
|
Choose an application
The synergy between artificial intelligence and power and energy systems is providing promising solutions to deal with the increasing complexity of the energy sector. Multi-agent systems, in particular, are widely used to simulate complex problems in the power and energy domain as they enable modeling dynamic environments and studying the interactions between the involved players. Multi-agent systems are suitable for dealing not only with problems related to the upper levels of the system, such as the transmission grid and wholesale electricity markets, but also to address challenges associated with the management of distributed generation, renewables, large-scale integration of electric vehicles, and consumption flexibility. Agent-based approaches are also being increasingly used for control and to combine simulation and emulation by enabling modeling of the details of buildings’ electrical devices, microgrids, and smart grid components. This book discusses and highlights the latest advances and trends in multi-agent energy systems simulation. The addressed application topics include the design, modeling, and simulation of electricity markets operation, the management and scheduling of energy resources, the definition of dynamic energy tariffs for consumption and electrical vehicles charging, the large-scale integration of variable renewable energy sources, and mitigation of the associated power network issues.
EV charging --- multi-agent system --- digital twin --- customer satisfaction indicator --- smart microgrid --- energy management system --- real-time optimization --- immune system algorithm --- economic dispatch --- energy consumption --- wireless sensor network --- cooperation --- collaboration --- ontology --- energy sector --- scoping review --- decision-aid --- distributed energy resources --- distribution system operator --- reactive power management --- uncertainty --- day-ahead market --- balancing market --- bilateral trading --- market design --- variable renewable energy --- agent-based simulation --- MATREM system --- congestion management --- dynamic tariff --- agent-based distribution networks --- demand response --- routing protocols --- performance parameters --- Wireless Sensor Network (WSN)
Choose an application
The rising trend in the global energy demand poses new challenges to humankind. The energy and mechanical engineering sectors are called to develop new and more environmentally friendly solutions to harvest residual energy from primary production processes. The Organic Rankine Cycle (ORC) is an emerging energy system for power production and waste heat recovery. In the near future, this technology can play an increasing role within the energy generation sectors and can help achieve the carbon footprint reduction targets of many industrial processes and human activities. This Special Issue focuses on selected research and application cases of ORC-based waste heat recovery solutions. Topics included in this publication cover the following aspects: performance modeling and optimization of ORC systems based on pure and zeotropic mixture working fluids; applications of waste heat recovery via ORC to gas turbines and reciprocating engines; optimal sizing and operation of ORC under combined heat and power and district heating application; the potential of ORC on board ships and related issues; life cycle analysis for biomass application; ORC integration with supercritical CO2 cycle; and the proper design of the main ORC components, including fluid dynamics issues. The current state of the art is considered and some cutting-edge ORC technology research activities are examined in this book.
History of engineering & technology --- organic Rankine cycle system --- zeotropic mixture --- heat exchanger --- low grade heat --- thermodynamic optimization --- method comparison --- micro-ORC --- gear pump --- CFD --- mesh morphing --- pressure pulsation --- cavitation --- dynamic analysis --- energy analysis --- exergy analysis --- organic Rankine cycle --- waste heat recovery --- natural gas engine --- scroll --- opensource CFD --- OpenFOAM --- CoolFOAM --- WOM --- positive displacement machine --- expander --- ORC --- ORC integration technologies --- advanced thermodynamic cycles --- decentralised energy systems --- benzene --- toluene --- cyclopentane --- internal combustion engine --- cogeneration --- district heating --- low sulfur fuels --- regression model --- predictive model --- ship --- techno-economic feasibility --- machinery system optimization --- life cycle assessment --- biomass --- CHP --- carbon footprint of energy production --- Brayton --- environmental impact --- exergy --- life cycle analysis --- performance parameters
Choose an application
The synergy between artificial intelligence and power and energy systems is providing promising solutions to deal with the increasing complexity of the energy sector. Multi-agent systems, in particular, are widely used to simulate complex problems in the power and energy domain as they enable modeling dynamic environments and studying the interactions between the involved players. Multi-agent systems are suitable for dealing not only with problems related to the upper levels of the system, such as the transmission grid and wholesale electricity markets, but also to address challenges associated with the management of distributed generation, renewables, large-scale integration of electric vehicles, and consumption flexibility. Agent-based approaches are also being increasingly used for control and to combine simulation and emulation by enabling modeling of the details of buildings’ electrical devices, microgrids, and smart grid components. This book discusses and highlights the latest advances and trends in multi-agent energy systems simulation. The addressed application topics include the design, modeling, and simulation of electricity markets operation, the management and scheduling of energy resources, the definition of dynamic energy tariffs for consumption and electrical vehicles charging, the large-scale integration of variable renewable energy sources, and mitigation of the associated power network issues.
History of engineering & technology --- EV charging --- multi-agent system --- digital twin --- customer satisfaction indicator --- smart microgrid --- energy management system --- real-time optimization --- immune system algorithm --- economic dispatch --- energy consumption --- wireless sensor network --- cooperation --- collaboration --- ontology --- energy sector --- scoping review --- decision-aid --- distributed energy resources --- distribution system operator --- reactive power management --- uncertainty --- day-ahead market --- balancing market --- bilateral trading --- market design --- variable renewable energy --- agent-based simulation --- MATREM system --- congestion management --- dynamic tariff --- agent-based distribution networks --- demand response --- routing protocols --- performance parameters --- Wireless Sensor Network (WSN)
Choose an application
The rising trend in the global energy demand poses new challenges to humankind. The energy and mechanical engineering sectors are called to develop new and more environmentally friendly solutions to harvest residual energy from primary production processes. The Organic Rankine Cycle (ORC) is an emerging energy system for power production and waste heat recovery. In the near future, this technology can play an increasing role within the energy generation sectors and can help achieve the carbon footprint reduction targets of many industrial processes and human activities. This Special Issue focuses on selected research and application cases of ORC-based waste heat recovery solutions. Topics included in this publication cover the following aspects: performance modeling and optimization of ORC systems based on pure and zeotropic mixture working fluids; applications of waste heat recovery via ORC to gas turbines and reciprocating engines; optimal sizing and operation of ORC under combined heat and power and district heating application; the potential of ORC on board ships and related issues; life cycle analysis for biomass application; ORC integration with supercritical CO2 cycle; and the proper design of the main ORC components, including fluid dynamics issues. The current state of the art is considered and some cutting-edge ORC technology research activities are examined in this book.
organic Rankine cycle system --- zeotropic mixture --- heat exchanger --- low grade heat --- thermodynamic optimization --- method comparison --- micro-ORC --- gear pump --- CFD --- mesh morphing --- pressure pulsation --- cavitation --- dynamic analysis --- energy analysis --- exergy analysis --- organic Rankine cycle --- waste heat recovery --- natural gas engine --- scroll --- opensource CFD --- OpenFOAM --- CoolFOAM --- WOM --- positive displacement machine --- expander --- ORC --- ORC integration technologies --- advanced thermodynamic cycles --- decentralised energy systems --- benzene --- toluene --- cyclopentane --- internal combustion engine --- cogeneration --- district heating --- low sulfur fuels --- regression model --- predictive model --- ship --- techno-economic feasibility --- machinery system optimization --- life cycle assessment --- biomass --- CHP --- carbon footprint of energy production --- Brayton --- environmental impact --- exergy --- life cycle analysis --- performance parameters
Choose an application
The synergy between artificial intelligence and power and energy systems is providing promising solutions to deal with the increasing complexity of the energy sector. Multi-agent systems, in particular, are widely used to simulate complex problems in the power and energy domain as they enable modeling dynamic environments and studying the interactions between the involved players. Multi-agent systems are suitable for dealing not only with problems related to the upper levels of the system, such as the transmission grid and wholesale electricity markets, but also to address challenges associated with the management of distributed generation, renewables, large-scale integration of electric vehicles, and consumption flexibility. Agent-based approaches are also being increasingly used for control and to combine simulation and emulation by enabling modeling of the details of buildings’ electrical devices, microgrids, and smart grid components. This book discusses and highlights the latest advances and trends in multi-agent energy systems simulation. The addressed application topics include the design, modeling, and simulation of electricity markets operation, the management and scheduling of energy resources, the definition of dynamic energy tariffs for consumption and electrical vehicles charging, the large-scale integration of variable renewable energy sources, and mitigation of the associated power network issues.
History of engineering & technology --- EV charging --- multi-agent system --- digital twin --- customer satisfaction indicator --- smart microgrid --- energy management system --- real-time optimization --- immune system algorithm --- economic dispatch --- energy consumption --- wireless sensor network --- cooperation --- collaboration --- ontology --- energy sector --- scoping review --- decision-aid --- distributed energy resources --- distribution system operator --- reactive power management --- uncertainty --- day-ahead market --- balancing market --- bilateral trading --- market design --- variable renewable energy --- agent-based simulation --- MATREM system --- congestion management --- dynamic tariff --- agent-based distribution networks --- demand response --- routing protocols --- performance parameters --- Wireless Sensor Network (WSN) --- EV charging --- multi-agent system --- digital twin --- customer satisfaction indicator --- smart microgrid --- energy management system --- real-time optimization --- immune system algorithm --- economic dispatch --- energy consumption --- wireless sensor network --- cooperation --- collaboration --- ontology --- energy sector --- scoping review --- decision-aid --- distributed energy resources --- distribution system operator --- reactive power management --- uncertainty --- day-ahead market --- balancing market --- bilateral trading --- market design --- variable renewable energy --- agent-based simulation --- MATREM system --- congestion management --- dynamic tariff --- agent-based distribution networks --- demand response --- routing protocols --- performance parameters --- Wireless Sensor Network (WSN)
Choose an application
The rising trend in the global energy demand poses new challenges to humankind. The energy and mechanical engineering sectors are called to develop new and more environmentally friendly solutions to harvest residual energy from primary production processes. The Organic Rankine Cycle (ORC) is an emerging energy system for power production and waste heat recovery. In the near future, this technology can play an increasing role within the energy generation sectors and can help achieve the carbon footprint reduction targets of many industrial processes and human activities. This Special Issue focuses on selected research and application cases of ORC-based waste heat recovery solutions. Topics included in this publication cover the following aspects: performance modeling and optimization of ORC systems based on pure and zeotropic mixture working fluids; applications of waste heat recovery via ORC to gas turbines and reciprocating engines; optimal sizing and operation of ORC under combined heat and power and district heating application; the potential of ORC on board ships and related issues; life cycle analysis for biomass application; ORC integration with supercritical CO2 cycle; and the proper design of the main ORC components, including fluid dynamics issues. The current state of the art is considered and some cutting-edge ORC technology research activities are examined in this book.
History of engineering & technology --- organic Rankine cycle system --- zeotropic mixture --- heat exchanger --- low grade heat --- thermodynamic optimization --- method comparison --- micro-ORC --- gear pump --- CFD --- mesh morphing --- pressure pulsation --- cavitation --- dynamic analysis --- energy analysis --- exergy analysis --- organic Rankine cycle --- waste heat recovery --- natural gas engine --- scroll --- opensource CFD --- OpenFOAM --- CoolFOAM --- WOM --- positive displacement machine --- expander --- ORC --- ORC integration technologies --- advanced thermodynamic cycles --- decentralised energy systems --- benzene --- toluene --- cyclopentane --- internal combustion engine --- cogeneration --- district heating --- low sulfur fuels --- regression model --- predictive model --- ship --- techno-economic feasibility --- machinery system optimization --- life cycle assessment --- biomass --- CHP --- carbon footprint of energy production --- Brayton --- environmental impact --- exergy --- life cycle analysis --- performance parameters --- organic Rankine cycle system --- zeotropic mixture --- heat exchanger --- low grade heat --- thermodynamic optimization --- method comparison --- micro-ORC --- gear pump --- CFD --- mesh morphing --- pressure pulsation --- cavitation --- dynamic analysis --- energy analysis --- exergy analysis --- organic Rankine cycle --- waste heat recovery --- natural gas engine --- scroll --- opensource CFD --- OpenFOAM --- CoolFOAM --- WOM --- positive displacement machine --- expander --- ORC --- ORC integration technologies --- advanced thermodynamic cycles --- decentralised energy systems --- benzene --- toluene --- cyclopentane --- internal combustion engine --- cogeneration --- district heating --- low sulfur fuels --- regression model --- predictive model --- ship --- techno-economic feasibility --- machinery system optimization --- life cycle assessment --- biomass --- CHP --- carbon footprint of energy production --- Brayton --- environmental impact --- exergy --- life cycle analysis --- performance parameters
Listing 1 - 6 of 6 |
Sort by
|