Listing 1 - 4 of 4 |
Sort by
|
Choose an application
Efficient clean energy harvesting, conversion, and storage technologies are of immense importance for the sustainable development of human society. To this end, scientists have made significant advances in recent years regarding new materials and devices for improving the energy conversion efficiency for photovoltaics, thermoelectric generation, photoelectrochemical/electrolytic hydrogen generation, and rechargeable metal ion batteries. The aim of this Special Issue is to provide a platform for research scientists and engineers in these areas to demonstrate and exchange their latest research findings. This thematic topic undoubtedly represents an extremely important technological direction, covering materials processing, characterization, simulation, and performance evaluation of thin films used in energy harvesting, conversion, and storage.
photoelectrochemical --- transparent conductive electrode --- lithium ion battery --- heterojunction --- Cu2ZnSn(S --- Ni-rich cathode material --- anode materials --- degradation --- dye-sensitized solar cells --- electron transfer --- water splitting --- energy storage --- bond population --- TiO2 nanotube --- atomic layered deposition --- PbI2 formation --- Ge incorporation --- visible light driven --- nanosheet arrays --- surface --- morphology --- perfect absorption --- organic sensitizers --- energy harvesting --- electronic structures --- water --- Al2O3 oxide --- thin film --- Se)4 --- solar cells --- energy conversion --- solar cell --- polymer --- nickel oxide --- metal-dielectric-metal structure --- color perception --- annealing --- nickel-cobalt-molybdenum metal oxide (NCMO) --- halide perovskite --- LaFeO3 --- few-layer graphene nano-flakes --- photocatalysis --- organic --- synthesis --- perovskite --- nanoparticle deposition system --- Fabry–Perot cavity --- thin films --- semitransparent --- coatings --- density functional theory --- LiNi0.8Co0.1Mn0.1O2 --- mixed metal oxides --- characterization --- density of states --- supercapacitor
Choose an application
The first nonlinear optical effect was observed in the 19th century by John Kerr. Nonlinear optics, however, started to grow up only after the invention of the laser, when intense light sources became easily available. The seminal studies by Peter Franken and Nicolaas Bloembergen, in the 1960s, paved the way for the development of today’s nonlinear photonics, the field of research that encompasses all the studies, designs, and implementations of nonlinear optical devices that can be used for the generation, communication, and processing of information. This field has attracted significant attention, partly due to the great potential of exploiting the optical nonlinearities of new or advanced materials to induce new phenomena and achieve new functions. According to Clarivate Web of Science, almost 200,000 papers were published that refer to the topic “nonlinear optic*”. Over 36,000 papers were published in the last four years (2015–2018) with the same keyword, and over 17,000 used the keyword “nonlinear photonic*”. The present Special Issue of Micromachines aims at reviewing the current state of the art and presenting perspectives of further development. Fundamental and applicative aspects are considered, with special attention paid to hot topics that may lead to technological and scientific breakthroughs.
Technology: general issues --- GeSn --- quantum dot --- electric field --- intersubband nonlinear optics --- absorption coefficients --- refractive index changes --- pure state --- cascaded spontaneous parametric down-conversion (SPDC) --- numerical simulation --- transparent conductive oxide --- coherent perfect absorption --- epsilon-near-zero media --- light-with-light modulation --- refractive index change --- non-linear photonics --- optical fibers --- thermal poling --- numerical analysis --- extrinsic chirality --- second harmonic generation --- GaAs nanowires --- plasmonic coating --- second-harmonic generation --- waveguide --- AlGaAs --- optical frequency combs --- quadratic nonlinearity --- optical parametric oscillator --- modulation instability --- stimulated raman scattering --- fiber optics --- amplifiers --- lasers --- optical communication systems --- kerr nonlinearity --- whispering gallery mode --- optical resonators --- stimulated brillouin scattering --- optomechanical oscillations --- nonlinear optics --- stimulated Raman scattering --- microphotonics --- nanophotonics --- nonlinear waveguide --- optical microcavity --- photonics crystals --- nanocrystals --- optical resonances --- harmonic generation --- four-wave mixing --- optical switching --- sub-wavelength gratings --- Mie scattering --- Fano resonances --- guided-mode resonance --- terahertz --- nonlinear optical conversion --- complex optical systems --- adaptive imaging --- single-pixel imaging --- surface nonlinear photonics --- n/a
Choose an application
The first nonlinear optical effect was observed in the 19th century by John Kerr. Nonlinear optics, however, started to grow up only after the invention of the laser, when intense light sources became easily available. The seminal studies by Peter Franken and Nicolaas Bloembergen, in the 1960s, paved the way for the development of today’s nonlinear photonics, the field of research that encompasses all the studies, designs, and implementations of nonlinear optical devices that can be used for the generation, communication, and processing of information. This field has attracted significant attention, partly due to the great potential of exploiting the optical nonlinearities of new or advanced materials to induce new phenomena and achieve new functions. According to Clarivate Web of Science, almost 200,000 papers were published that refer to the topic “nonlinear optic*”. Over 36,000 papers were published in the last four years (2015–2018) with the same keyword, and over 17,000 used the keyword “nonlinear photonic*”. The present Special Issue of Micromachines aims at reviewing the current state of the art and presenting perspectives of further development. Fundamental and applicative aspects are considered, with special attention paid to hot topics that may lead to technological and scientific breakthroughs.
GeSn --- quantum dot --- electric field --- intersubband nonlinear optics --- absorption coefficients --- refractive index changes --- pure state --- cascaded spontaneous parametric down-conversion (SPDC) --- numerical simulation --- transparent conductive oxide --- coherent perfect absorption --- epsilon-near-zero media --- light-with-light modulation --- refractive index change --- non-linear photonics --- optical fibers --- thermal poling --- numerical analysis --- extrinsic chirality --- second harmonic generation --- GaAs nanowires --- plasmonic coating --- second-harmonic generation --- waveguide --- AlGaAs --- optical frequency combs --- quadratic nonlinearity --- optical parametric oscillator --- modulation instability --- stimulated raman scattering --- fiber optics --- amplifiers --- lasers --- optical communication systems --- kerr nonlinearity --- whispering gallery mode --- optical resonators --- stimulated brillouin scattering --- optomechanical oscillations --- nonlinear optics --- stimulated Raman scattering --- microphotonics --- nanophotonics --- nonlinear waveguide --- optical microcavity --- photonics crystals --- nanocrystals --- optical resonances --- harmonic generation --- four-wave mixing --- optical switching --- sub-wavelength gratings --- Mie scattering --- Fano resonances --- guided-mode resonance --- terahertz --- nonlinear optical conversion --- complex optical systems --- adaptive imaging --- single-pixel imaging --- surface nonlinear photonics --- n/a
Choose an application
The first nonlinear optical effect was observed in the 19th century by John Kerr. Nonlinear optics, however, started to grow up only after the invention of the laser, when intense light sources became easily available. The seminal studies by Peter Franken and Nicolaas Bloembergen, in the 1960s, paved the way for the development of today’s nonlinear photonics, the field of research that encompasses all the studies, designs, and implementations of nonlinear optical devices that can be used for the generation, communication, and processing of information. This field has attracted significant attention, partly due to the great potential of exploiting the optical nonlinearities of new or advanced materials to induce new phenomena and achieve new functions. According to Clarivate Web of Science, almost 200,000 papers were published that refer to the topic “nonlinear optic*”. Over 36,000 papers were published in the last four years (2015–2018) with the same keyword, and over 17,000 used the keyword “nonlinear photonic*”. The present Special Issue of Micromachines aims at reviewing the current state of the art and presenting perspectives of further development. Fundamental and applicative aspects are considered, with special attention paid to hot topics that may lead to technological and scientific breakthroughs.
Technology: general issues --- GeSn --- quantum dot --- electric field --- intersubband nonlinear optics --- absorption coefficients --- refractive index changes --- pure state --- cascaded spontaneous parametric down-conversion (SPDC) --- numerical simulation --- transparent conductive oxide --- coherent perfect absorption --- epsilon-near-zero media --- light-with-light modulation --- refractive index change --- non-linear photonics --- optical fibers --- thermal poling --- numerical analysis --- extrinsic chirality --- second harmonic generation --- GaAs nanowires --- plasmonic coating --- second-harmonic generation --- waveguide --- AlGaAs --- optical frequency combs --- quadratic nonlinearity --- optical parametric oscillator --- modulation instability --- stimulated raman scattering --- fiber optics --- amplifiers --- lasers --- optical communication systems --- kerr nonlinearity --- whispering gallery mode --- optical resonators --- stimulated brillouin scattering --- optomechanical oscillations --- nonlinear optics --- stimulated Raman scattering --- microphotonics --- nanophotonics --- nonlinear waveguide --- optical microcavity --- photonics crystals --- nanocrystals --- optical resonances --- harmonic generation --- four-wave mixing --- optical switching --- sub-wavelength gratings --- Mie scattering --- Fano resonances --- guided-mode resonance --- terahertz --- nonlinear optical conversion --- complex optical systems --- adaptive imaging --- single-pixel imaging --- surface nonlinear photonics
Listing 1 - 4 of 4 |
Sort by
|