Narrow your search

Library

FARO (3)

KU Leuven (3)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

ULB (3)

ULiège (3)

VIVES (3)

More...

Resource type

book (9)


Language

English (9)


Year
From To Submit

2022 (3)

2021 (3)

2020 (3)

Listing 1 - 9 of 9
Sort by

Book
Impact of Climate-Change on Water Resources
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

- Water resources management should be assessed under climate change conditions, as historic data cannot replicate future climatic conditions. - Climate change impacts on water resources are bound to affect all water uses, i.e., irrigated agriculture, domestic and industrial water supply, hydropower generation, and environmental flow (of streams and rivers) and water level (of lakes). - Bottom-up approaches, i.e., the forcing of hydrologic simulation models with climate change models’ outputs, are the most common engineering practices and considered as climate-resilient water management approaches. - Hydrologic simulations forced by climate change scenarios derived from regional climate models (RCMs) can provide accurate assessments of the future water regime at basin scales. - Irrigated agriculture requires special attention as it is the principal water consumer and alterations of both precipitation and temperature patterns will directly affect agriculture yields and incomes. - Integrated water resources management (IWRM) requires multidisciplinary and interdisciplinary approaches, with climate change to be an emerging cornerstone in the IWRM concept.


Book
Impact of Climate-Change on Water Resources
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

- Water resources management should be assessed under climate change conditions, as historic data cannot replicate future climatic conditions. - Climate change impacts on water resources are bound to affect all water uses, i.e., irrigated agriculture, domestic and industrial water supply, hydropower generation, and environmental flow (of streams and rivers) and water level (of lakes). - Bottom-up approaches, i.e., the forcing of hydrologic simulation models with climate change models’ outputs, are the most common engineering practices and considered as climate-resilient water management approaches. - Hydrologic simulations forced by climate change scenarios derived from regional climate models (RCMs) can provide accurate assessments of the future water regime at basin scales. - Irrigated agriculture requires special attention as it is the principal water consumer and alterations of both precipitation and temperature patterns will directly affect agriculture yields and incomes. - Integrated water resources management (IWRM) requires multidisciplinary and interdisciplinary approaches, with climate change to be an emerging cornerstone in the IWRM concept.


Book
Impacts of Landscape Change on Water Resources
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Changes in land use and land cover can have many drivers, including population growth, urbanization, agriculture, demand for food, evolution of socio-economic structure, policy regulations, and climate variability. The impacts of these changes on water resources range from changes in water availability (due to changes in losses of water to evapotranspiration and recharge) to degradation of water quality (increased erosion, salinity, chemical loadings, and pathogens). The impacts are manifested through complex hydro-bio-geo-climate characteristics, which underscore the need for integrated scientific approaches to understand the impacts of landscape change on water resources. Several techniques, such as field studies, long-term monitoring, remote sensing technologies, and advanced modeling studies, have contributed to better understanding the modes and mechanisms by which landscape changes impact water resources. Such research studies can help unlock the complex interconnected influences of landscape on water resources in terms of quantity and quality at multiple spatial and temporal scales. In this Special Issue, we published a set of eight peer-reviewed articles elaborating on some of the specific topics of landscape changes and associated impacts on water resources.


Book
Allergic Rhinosinusitis and Airway Diseases
Author:
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Book, entiled “Allergic Rhinosinusitis and Airway Diseases”, presents the concept of united airway disease interaction, which comprises chronic rhinosinusitis and other lower airway disorders such as asthma. This concept furthers a deeper comprehension on the pathophysiology and management of upper and lower airway diseases. In this Book, the published papers cover different interesting topics such as healthcare equality, advanced biomarkers, accurate diagnosis and treatment, occupational exposure-induced upper airway allergy and neoplastic disease mimicking chronic rhinosinusitis.


Book
Impacts of Landscape Change on Water Resources
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Changes in land use and land cover can have many drivers, including population growth, urbanization, agriculture, demand for food, evolution of socio-economic structure, policy regulations, and climate variability. The impacts of these changes on water resources range from changes in water availability (due to changes in losses of water to evapotranspiration and recharge) to degradation of water quality (increased erosion, salinity, chemical loadings, and pathogens). The impacts are manifested through complex hydro-bio-geo-climate characteristics, which underscore the need for integrated scientific approaches to understand the impacts of landscape change on water resources. Several techniques, such as field studies, long-term monitoring, remote sensing technologies, and advanced modeling studies, have contributed to better understanding the modes and mechanisms by which landscape changes impact water resources. Such research studies can help unlock the complex interconnected influences of landscape on water resources in terms of quantity and quality at multiple spatial and temporal scales. In this Special Issue, we published a set of eight peer-reviewed articles elaborating on some of the specific topics of landscape changes and associated impacts on water resources.


Book
Allergic Rhinosinusitis and Airway Diseases
Author:
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Book, entiled “Allergic Rhinosinusitis and Airway Diseases”, presents the concept of united airway disease interaction, which comprises chronic rhinosinusitis and other lower airway disorders such as asthma. This concept furthers a deeper comprehension on the pathophysiology and management of upper and lower airway diseases. In this Book, the published papers cover different interesting topics such as healthcare equality, advanced biomarkers, accurate diagnosis and treatment, occupational exposure-induced upper airway allergy and neoplastic disease mimicking chronic rhinosinusitis.


Book
Impacts of Landscape Change on Water Resources
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Changes in land use and land cover can have many drivers, including population growth, urbanization, agriculture, demand for food, evolution of socio-economic structure, policy regulations, and climate variability. The impacts of these changes on water resources range from changes in water availability (due to changes in losses of water to evapotranspiration and recharge) to degradation of water quality (increased erosion, salinity, chemical loadings, and pathogens). The impacts are manifested through complex hydro-bio-geo-climate characteristics, which underscore the need for integrated scientific approaches to understand the impacts of landscape change on water resources. Several techniques, such as field studies, long-term monitoring, remote sensing technologies, and advanced modeling studies, have contributed to better understanding the modes and mechanisms by which landscape changes impact water resources. Such research studies can help unlock the complex interconnected influences of landscape on water resources in terms of quantity and quality at multiple spatial and temporal scales. In this Special Issue, we published a set of eight peer-reviewed articles elaborating on some of the specific topics of landscape changes and associated impacts on water resources.

Keywords

History of engineering & technology --- LID practices --- watershed scale --- impervious area --- peak flow --- surface runoff --- shallow subsurface runoff and infiltration --- evapotranspiration --- stream temperature --- SWAT --- Marys River watershed --- soil temperature --- solar energy --- watershed model --- landscape scale --- VELMA --- bank erosion --- landscape metrics --- diversity --- Sajó River --- UAV --- spatial configuration units --- best management practices (BMPs) --- spatial optimization --- hydrologic response units (HRUs) --- hydrologically connected fields --- slope positions --- watershed process simulation --- DMMF --- landscape configuration --- landscape ecology --- hydrology --- scaling-up conservation agriculture --- drip irrigation --- groundwater potential --- sustainable intensification --- Ethiopia --- flood analysis --- hydrologic modeling --- hydrodynamic modeling --- HEC-RAS --- flood zone delineation --- landscape change --- water resources analysis --- water modeling --- impact assessment --- LID practices --- watershed scale --- impervious area --- peak flow --- surface runoff --- shallow subsurface runoff and infiltration --- evapotranspiration --- stream temperature --- SWAT --- Marys River watershed --- soil temperature --- solar energy --- watershed model --- landscape scale --- VELMA --- bank erosion --- landscape metrics --- diversity --- Sajó River --- UAV --- spatial configuration units --- best management practices (BMPs) --- spatial optimization --- hydrologic response units (HRUs) --- hydrologically connected fields --- slope positions --- watershed process simulation --- DMMF --- landscape configuration --- landscape ecology --- hydrology --- scaling-up conservation agriculture --- drip irrigation --- groundwater potential --- sustainable intensification --- Ethiopia --- flood analysis --- hydrologic modeling --- hydrodynamic modeling --- HEC-RAS --- flood zone delineation --- landscape change --- water resources analysis --- water modeling --- impact assessment


Book
Allergic Rhinosinusitis and Airway Diseases
Author:
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Book, entiled “Allergic Rhinosinusitis and Airway Diseases”, presents the concept of united airway disease interaction, which comprises chronic rhinosinusitis and other lower airway disorders such as asthma. This concept furthers a deeper comprehension on the pathophysiology and management of upper and lower airway diseases. In this Book, the published papers cover different interesting topics such as healthcare equality, advanced biomarkers, accurate diagnosis and treatment, occupational exposure-induced upper airway allergy and neoplastic disease mimicking chronic rhinosinusitis.

Keywords

Medicine --- chronic rhinosinusitis --- B-cell lymphoproliferative disorder --- sinus --- nasal allergies --- tannery worker --- Kanpur --- asthma --- ovalbumin --- saffron --- salbutamol --- IL's --- TNF-α --- allergic rhinitis --- bronchial asthma --- allergy --- Th17 cells --- IL-17 --- IL-33 --- microRNA --- miR --- airway mucosal inflammation --- united airway disease --- acute rhinosinusitis --- acute recurrent rhinosinusitis --- Mediterranean diet --- nutritional evaluation --- nutritional therapy --- olfactory dysfunction --- anosmia --- post-acute COVID-19 --- nitric oxide --- NO --- exhaled NO --- FENO --- nasal peak flow --- atopic status --- total IgE --- specific IgE --- childhood asthma --- immunoblot --- ImmunoCAP --- otolaryngology --- sinusitis --- ethnic groups --- patient-reported outcome measures --- quality of life --- social justice --- chronic rhinosinusitis --- B-cell lymphoproliferative disorder --- sinus --- nasal allergies --- tannery worker --- Kanpur --- asthma --- ovalbumin --- saffron --- salbutamol --- IL's --- TNF-α --- allergic rhinitis --- bronchial asthma --- allergy --- Th17 cells --- IL-17 --- IL-33 --- microRNA --- miR --- airway mucosal inflammation --- united airway disease --- acute rhinosinusitis --- acute recurrent rhinosinusitis --- Mediterranean diet --- nutritional evaluation --- nutritional therapy --- olfactory dysfunction --- anosmia --- post-acute COVID-19 --- nitric oxide --- NO --- exhaled NO --- FENO --- nasal peak flow --- atopic status --- total IgE --- specific IgE --- childhood asthma --- immunoblot --- ImmunoCAP --- otolaryngology --- sinusitis --- ethnic groups --- patient-reported outcome measures --- quality of life --- social justice


Book
Impact of Climate-Change on Water Resources
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

- Water resources management should be assessed under climate change conditions, as historic data cannot replicate future climatic conditions. - Climate change impacts on water resources are bound to affect all water uses, i.e., irrigated agriculture, domestic and industrial water supply, hydropower generation, and environmental flow (of streams and rivers) and water level (of lakes). - Bottom-up approaches, i.e., the forcing of hydrologic simulation models with climate change models’ outputs, are the most common engineering practices and considered as climate-resilient water management approaches. - Hydrologic simulations forced by climate change scenarios derived from regional climate models (RCMs) can provide accurate assessments of the future water regime at basin scales. - Irrigated agriculture requires special attention as it is the principal water consumer and alterations of both precipitation and temperature patterns will directly affect agriculture yields and incomes. - Integrated water resources management (IWRM) requires multidisciplinary and interdisciplinary approaches, with climate change to be an emerging cornerstone in the IWRM concept.

Keywords

Research & information: general --- Precipitation --- Tropical Rainfall Measurement Mission (TRMM) --- Multi-Satellite Precipitation Analysis (TMPA) --- Upper Indus Basin (UIB) --- Himalaya --- streamflow --- extreme rainfall --- watershed --- dynamics of saline lakes --- extremely changing points --- extreme weather --- temporal trend --- climate change --- salinization --- water resources management --- drinking water --- debris --- water balance --- climatic change --- dam capacity --- simulation of sediment transport --- Athabasca River --- climate projection --- hydrologic modelling --- peak-flow --- return period --- stationary analysis --- non-stationary analysis --- global --- temperature --- precipitation --- Net Irrigation Water Requirement --- maize --- hydrologic modeling --- reanalysis gridded datasets --- ERA-Interim --- Balkan Peninsula --- Precipitation --- Tropical Rainfall Measurement Mission (TRMM) --- Multi-Satellite Precipitation Analysis (TMPA) --- Upper Indus Basin (UIB) --- Himalaya --- streamflow --- extreme rainfall --- watershed --- dynamics of saline lakes --- extremely changing points --- extreme weather --- temporal trend --- climate change --- salinization --- water resources management --- drinking water --- debris --- water balance --- climatic change --- dam capacity --- simulation of sediment transport --- Athabasca River --- climate projection --- hydrologic modelling --- peak-flow --- return period --- stationary analysis --- non-stationary analysis --- global --- temperature --- precipitation --- Net Irrigation Water Requirement --- maize --- hydrologic modeling --- reanalysis gridded datasets --- ERA-Interim --- Balkan Peninsula

Listing 1 - 9 of 9
Sort by