Narrow your search

Library

FARO (3)

KU Leuven (3)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

ULB (3)

ULiège (3)

VIVES (3)

More...

Resource type

book (7)


Language

English (7)


Year
From To Submit

2022 (4)

2021 (3)

Listing 1 - 7 of 7
Sort by

Book
Feasible, Robust and Reliable Automation and Control for Autonomous Systems
Authors: --- ---
ISBN: 3036550763 3036550755 Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The Special Issue book focuses on highlighting current research and developments in the automation and control field for autonomous systems as well as showcasing state-of-the-art control strategy approaches for autonomous platforms. The book is co-edited by distinguished international control system experts currently based in Sweden, the United States of America, and the United Kingdom, with contributions from reputable researchers from China, Austria, France, the United States of America, Poland, and Hungary, among many others. The editors believe the ten articles published within this Special Issue will be highly appealing to control-systems-related researchers in applications typified in the fields of ground, aerial, maritime vehicles, and robotics as well as industrial audiences.


Book
Sensors Fault Diagnosis Trends and Applications
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Fault diagnosis has always been a concern for industry. In general, diagnosis in complex systems requires the acquisition of information from sensors and the processing and extracting of required features for the classification or identification of faults. Therefore, fault diagnosis of sensors is clearly important as faulty information from a sensor may lead to misleading conclusions about the whole system. As engineering systems grow in size and complexity, it becomes more and more important to diagnose faulty behavior before it can lead to total failure. In the light of above issues, this book is dedicated to trends and applications in modern-sensor fault diagnosis.


Book
Sensors Fault Diagnosis Trends and Applications
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Fault diagnosis has always been a concern for industry. In general, diagnosis in complex systems requires the acquisition of information from sensors and the processing and extracting of required features for the classification or identification of faults. Therefore, fault diagnosis of sensors is clearly important as faulty information from a sensor may lead to misleading conclusions about the whole system. As engineering systems grow in size and complexity, it becomes more and more important to diagnose faulty behavior before it can lead to total failure. In the light of above issues, this book is dedicated to trends and applications in modern-sensor fault diagnosis.


Book
Sensors Fault Diagnosis Trends and Applications
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Fault diagnosis has always been a concern for industry. In general, diagnosis in complex systems requires the acquisition of information from sensors and the processing and extracting of required features for the classification or identification of faults. Therefore, fault diagnosis of sensors is clearly important as faulty information from a sensor may lead to misleading conclusions about the whole system. As engineering systems grow in size and complexity, it becomes more and more important to diagnose faulty behavior before it can lead to total failure. In the light of above issues, this book is dedicated to trends and applications in modern-sensor fault diagnosis.

Keywords

Technology: general issues --- rolling bearing --- performance degradation --- hybrid kernel function --- krill herd algorithm --- SVR --- acoustic-based diagnosis --- gear fault diagnosis --- attention mechanism --- convolutional neural network --- stacked auto-encoder --- weighting strategy --- deep learning --- bearing fault diagnosis --- intelligent leak detection --- acoustic emission signals --- statistical parameters --- support vector machine --- wavelet denoising --- Shannon entropy --- adaptive noise reducer --- gaussian reference signal --- gearbox fault diagnosis --- one against on multiclass support vector machine --- varying rotational speed --- fault detection and diagnosis --- faults estimation --- actuator and sensor fault --- observer design --- Takagi-Sugeno fuzzy systems --- automotive --- perception sensor --- lidar --- fault detection --- fault isolation --- fault identification --- fault recovery --- fault diagnosis --- fault detection and isolation (FDIR) --- autonomous vehicle --- model predictive control --- path tracking control --- fault detection and isolation --- braking control --- nonlinear systems --- fault tolerant control --- iterative learning control --- neural networks --- cryptography --- wireless sensor networks --- machine learning --- scan-chain diagnosis --- artificial neural network --- NARX --- control valve --- decision tree --- signature matrix --- rolling bearing --- performance degradation --- hybrid kernel function --- krill herd algorithm --- SVR --- acoustic-based diagnosis --- gear fault diagnosis --- attention mechanism --- convolutional neural network --- stacked auto-encoder --- weighting strategy --- deep learning --- bearing fault diagnosis --- intelligent leak detection --- acoustic emission signals --- statistical parameters --- support vector machine --- wavelet denoising --- Shannon entropy --- adaptive noise reducer --- gaussian reference signal --- gearbox fault diagnosis --- one against on multiclass support vector machine --- varying rotational speed --- fault detection and diagnosis --- faults estimation --- actuator and sensor fault --- observer design --- Takagi-Sugeno fuzzy systems --- automotive --- perception sensor --- lidar --- fault detection --- fault isolation --- fault identification --- fault recovery --- fault diagnosis --- fault detection and isolation (FDIR) --- autonomous vehicle --- model predictive control --- path tracking control --- fault detection and isolation --- braking control --- nonlinear systems --- fault tolerant control --- iterative learning control --- neural networks --- cryptography --- wireless sensor networks --- machine learning --- scan-chain diagnosis --- artificial neural network --- NARX --- control valve --- decision tree --- signature matrix


Book
Actuators for Intelligent Electric Vehicles
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book details the advanced actuators for IEVs and the control algorithm design. In the actuator design, the configuration four-wheel independent drive/steering electric vehicles is reviewed. An in-wheel two-speed AMT with selectable one-way clutch is designed for IEV. Considering uncertainties, the optimization design for the planetary gear train of IEV is conducted. An electric power steering system is designed for IEV. In addition, advanced control algorithms are proposed in favour of active safety improvement. A supervision mechanism is applied to the segment drift control of autonomous driving. Double super-resolution network is used to design the intelligent driving algorithm. Torque distribution control technology and four-wheel steering technology are utilized for path tracking and adaptive cruise control. To advance the control accuracy, advanced estimation algorithms are studied in this book. The tyre-road peak friction coefficient under full slip rate range is identified based on the normalized tyre model. The pressure of the electro-hydraulic brake system is estimated based on signal fusion. Besides, a multi-semantic driver behaviour recognition model of autonomous vehicles is designed using confidence fusion mechanism. Moreover, a mono-vision based lateral localization system of low-cost autonomous vehicles is proposed with deep learning curb detection. To sum up, the discussed advanced actuators, control and estimation algorithms are beneficial to the active safety improvement of IEVs.

Keywords

Technology: general issues --- History of engineering & technology --- Mechanical engineering & materials --- curb detection --- intelligent vehicles --- autonomous driving --- electro-hydraulic brake system --- master cylinder pressure estimation --- vehicle longitudinal dynamics --- brake linings’ coefficient of friction --- ACC --- safety evaluation --- human-like evaluation --- naturalistic driving study --- driving behavior characteristic --- electric vehicles --- independent drive --- direct yaw control --- torque distribution --- ultra-wideband --- relative localization --- enhanced precision --- clock self-correction --- homotopy --- Levenberg–Marquardt --- electric power steering --- steering actuator --- driverless racing vehicles --- control --- autonomous vehicles --- lane-changing --- decision-making --- path planning --- four-wheel independent drive --- four-wheel independent steering --- path tracking --- handling stability --- active safety control --- electric vehicle --- intelligent sanitation vehicle --- trash can-handling robot --- truss structure --- multi-objective parameter optimization --- topology optimization --- discrete optimization --- multiple load cases --- intelligent electric vehicles --- driver behavior recognition --- multi-semantic description --- confidence fusion --- drift parking --- open-loop control --- supervision mechanism --- two-speed AMT --- in-wheel-drive --- shifting process --- selectable one-way clutch --- five-degree-of-freedom vehicle model --- pressure–position model --- recursive least square --- advanced driver assistant systems --- adaptive cruise control --- direct yaw moment control --- extension control --- model predictive control --- optimization design --- vehicle structure design --- uncertainty --- deceleration device --- tyre-road peak friction coefficient estimation --- tyre model --- normalization --- incentive sensitivity --- four-wheel steering --- semantic segmentation --- high-resolution atlas training --- super-resolution --- curb detection --- intelligent vehicles --- autonomous driving --- electro-hydraulic brake system --- master cylinder pressure estimation --- vehicle longitudinal dynamics --- brake linings’ coefficient of friction --- ACC --- safety evaluation --- human-like evaluation --- naturalistic driving study --- driving behavior characteristic --- electric vehicles --- independent drive --- direct yaw control --- torque distribution --- ultra-wideband --- relative localization --- enhanced precision --- clock self-correction --- homotopy --- Levenberg–Marquardt --- electric power steering --- steering actuator --- driverless racing vehicles --- control --- autonomous vehicles --- lane-changing --- decision-making --- path planning --- four-wheel independent drive --- four-wheel independent steering --- path tracking --- handling stability --- active safety control --- electric vehicle --- intelligent sanitation vehicle --- trash can-handling robot --- truss structure --- multi-objective parameter optimization --- topology optimization --- discrete optimization --- multiple load cases --- intelligent electric vehicles --- driver behavior recognition --- multi-semantic description --- confidence fusion --- drift parking --- open-loop control --- supervision mechanism --- two-speed AMT --- in-wheel-drive --- shifting process --- selectable one-way clutch --- five-degree-of-freedom vehicle model --- pressure–position model --- recursive least square --- advanced driver assistant systems --- adaptive cruise control --- direct yaw moment control --- extension control --- model predictive control --- optimization design --- vehicle structure design --- uncertainty --- deceleration device --- tyre-road peak friction coefficient estimation --- tyre model --- normalization --- incentive sensitivity --- four-wheel steering --- semantic segmentation --- high-resolution atlas training --- super-resolution


Book
Actuators for Intelligent Electric Vehicles
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book details the advanced actuators for IEVs and the control algorithm design. In the actuator design, the configuration four-wheel independent drive/steering electric vehicles is reviewed. An in-wheel two-speed AMT with selectable one-way clutch is designed for IEV. Considering uncertainties, the optimization design for the planetary gear train of IEV is conducted. An electric power steering system is designed for IEV. In addition, advanced control algorithms are proposed in favour of active safety improvement. A supervision mechanism is applied to the segment drift control of autonomous driving. Double super-resolution network is used to design the intelligent driving algorithm. Torque distribution control technology and four-wheel steering technology are utilized for path tracking and adaptive cruise control. To advance the control accuracy, advanced estimation algorithms are studied in this book. The tyre-road peak friction coefficient under full slip rate range is identified based on the normalized tyre model. The pressure of the electro-hydraulic brake system is estimated based on signal fusion. Besides, a multi-semantic driver behaviour recognition model of autonomous vehicles is designed using confidence fusion mechanism. Moreover, a mono-vision based lateral localization system of low-cost autonomous vehicles is proposed with deep learning curb detection. To sum up, the discussed advanced actuators, control and estimation algorithms are beneficial to the active safety improvement of IEVs.

Keywords

Technology: general issues --- History of engineering & technology --- Mechanical engineering & materials --- curb detection --- intelligent vehicles --- autonomous driving --- electro-hydraulic brake system --- master cylinder pressure estimation --- vehicle longitudinal dynamics --- brake linings’ coefficient of friction --- ACC --- safety evaluation --- human-like evaluation --- naturalistic driving study --- driving behavior characteristic --- electric vehicles --- independent drive --- direct yaw control --- torque distribution --- ultra-wideband --- relative localization --- enhanced precision --- clock self-correction --- homotopy --- Levenberg–Marquardt --- electric power steering --- steering actuator --- driverless racing vehicles --- control --- autonomous vehicles --- lane-changing --- decision-making --- path planning --- four-wheel independent drive --- four-wheel independent steering --- path tracking --- handling stability --- active safety control --- electric vehicle --- intelligent sanitation vehicle --- trash can-handling robot --- truss structure --- multi-objective parameter optimization --- topology optimization --- discrete optimization --- multiple load cases --- intelligent electric vehicles --- driver behavior recognition --- multi-semantic description --- confidence fusion --- drift parking --- open-loop control --- supervision mechanism --- two-speed AMT --- in-wheel-drive --- shifting process --- selectable one-way clutch --- five-degree-of-freedom vehicle model --- pressure–position model --- recursive least square --- advanced driver assistant systems --- adaptive cruise control --- direct yaw moment control --- extension control --- model predictive control --- optimization design --- vehicle structure design --- uncertainty --- deceleration device --- tyre-road peak friction coefficient estimation --- tyre model --- normalization --- incentive sensitivity --- four-wheel steering --- semantic segmentation --- high-resolution atlas training --- super-resolution


Book
Actuators for Intelligent Electric Vehicles
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book details the advanced actuators for IEVs and the control algorithm design. In the actuator design, the configuration four-wheel independent drive/steering electric vehicles is reviewed. An in-wheel two-speed AMT with selectable one-way clutch is designed for IEV. Considering uncertainties, the optimization design for the planetary gear train of IEV is conducted. An electric power steering system is designed for IEV. In addition, advanced control algorithms are proposed in favour of active safety improvement. A supervision mechanism is applied to the segment drift control of autonomous driving. Double super-resolution network is used to design the intelligent driving algorithm. Torque distribution control technology and four-wheel steering technology are utilized for path tracking and adaptive cruise control. To advance the control accuracy, advanced estimation algorithms are studied in this book. The tyre-road peak friction coefficient under full slip rate range is identified based on the normalized tyre model. The pressure of the electro-hydraulic brake system is estimated based on signal fusion. Besides, a multi-semantic driver behaviour recognition model of autonomous vehicles is designed using confidence fusion mechanism. Moreover, a mono-vision based lateral localization system of low-cost autonomous vehicles is proposed with deep learning curb detection. To sum up, the discussed advanced actuators, control and estimation algorithms are beneficial to the active safety improvement of IEVs.

Keywords

curb detection --- intelligent vehicles --- autonomous driving --- electro-hydraulic brake system --- master cylinder pressure estimation --- vehicle longitudinal dynamics --- brake linings’ coefficient of friction --- ACC --- safety evaluation --- human-like evaluation --- naturalistic driving study --- driving behavior characteristic --- electric vehicles --- independent drive --- direct yaw control --- torque distribution --- ultra-wideband --- relative localization --- enhanced precision --- clock self-correction --- homotopy --- Levenberg–Marquardt --- electric power steering --- steering actuator --- driverless racing vehicles --- control --- autonomous vehicles --- lane-changing --- decision-making --- path planning --- four-wheel independent drive --- four-wheel independent steering --- path tracking --- handling stability --- active safety control --- electric vehicle --- intelligent sanitation vehicle --- trash can-handling robot --- truss structure --- multi-objective parameter optimization --- topology optimization --- discrete optimization --- multiple load cases --- intelligent electric vehicles --- driver behavior recognition --- multi-semantic description --- confidence fusion --- drift parking --- open-loop control --- supervision mechanism --- two-speed AMT --- in-wheel-drive --- shifting process --- selectable one-way clutch --- five-degree-of-freedom vehicle model --- pressure–position model --- recursive least square --- advanced driver assistant systems --- adaptive cruise control --- direct yaw moment control --- extension control --- model predictive control --- optimization design --- vehicle structure design --- uncertainty --- deceleration device --- tyre-road peak friction coefficient estimation --- tyre model --- normalization --- incentive sensitivity --- four-wheel steering --- semantic segmentation --- high-resolution atlas training --- super-resolution

Listing 1 - 7 of 7
Sort by