Listing 1 - 4 of 4 |
Sort by
|
Choose an application
Remote image capture systems are a key element in efficient and sustainable agriculture nowadays. They are increasingly being used to obtain information of interest from the crops, the soil and the environment. It includes different types of capturing devices: from satellites and drones, to in-field devices; different types of spectral information, from visible RGB images, to multispectral images; different types of applications; and different types of techniques in the areas of image processing, computer vision, pattern recognition and machine learning. This book covers all these aspects, through a series of chapters that describe specific recent applications of these techniques in interesting problems of agricultural engineering.
History of engineering & technology --- SVM --- budding rate --- UAV --- geometric consistency --- radiometric consistency --- point clouds --- ICP --- reflectance maps --- vegetation indices --- Parrot Sequoia --- artificial intelligence --- precision agriculture --- agricultural robot --- optimization algorithm --- online operation --- segmentation --- coffee leaf rust --- machine learning --- deep learning --- remote sensing --- Fourth Industrial Revolution --- Agriculture 4.0 --- failure strain --- sandstone --- digital image correlation --- Hill-Tsai failure criterion --- finite element method --- reference evapotranspiration --- moisture sensors --- machine learning regression --- frequency-domain reflectometry --- randomizable filtered classifier --- convolutional neural network --- U-Net --- land use --- banana plantation --- Panama TR4 --- aerial photography --- remote images --- systematic mapping study --- agriculture --- applications --- total leaf area --- mixed pixels --- Cabernet Sauvignon --- NDVI --- Normalized Difference Vegetation Index --- precision viticulture --- 3D model --- spatial vision --- fertirrigation --- teaching-learning --- spectrometry --- Sentinel-2 --- pasture quality index --- normalized difference vegetation index --- normalized difference water index --- supplementation --- decision making --- digital agriculture --- grape yield estimate --- berries counting --- Dilated CNN --- machine learning algorithms --- classification performance --- winter wheat mapping --- large-scale --- water stress --- Prunus avium L. --- stem water potential --- low-cost thermography --- thermal indexes --- canopy temperature --- non-water-stressed baselines --- non-transpiration baseline --- soil moisture --- andosols --- image processing --- greenhouse --- automatic tomato harvesting --- SVM --- budding rate --- UAV --- geometric consistency --- radiometric consistency --- point clouds --- ICP --- reflectance maps --- vegetation indices --- Parrot Sequoia --- artificial intelligence --- precision agriculture --- agricultural robot --- optimization algorithm --- online operation --- segmentation --- coffee leaf rust --- machine learning --- deep learning --- remote sensing --- Fourth Industrial Revolution --- Agriculture 4.0 --- failure strain --- sandstone --- digital image correlation --- Hill-Tsai failure criterion --- finite element method --- reference evapotranspiration --- moisture sensors --- machine learning regression --- frequency-domain reflectometry --- randomizable filtered classifier --- convolutional neural network --- U-Net --- land use --- banana plantation --- Panama TR4 --- aerial photography --- remote images --- systematic mapping study --- agriculture --- applications --- total leaf area --- mixed pixels --- Cabernet Sauvignon --- NDVI --- Normalized Difference Vegetation Index --- precision viticulture --- 3D model --- spatial vision --- fertirrigation --- teaching-learning --- spectrometry --- Sentinel-2 --- pasture quality index --- normalized difference vegetation index --- normalized difference water index --- supplementation --- decision making --- digital agriculture --- grape yield estimate --- berries counting --- Dilated CNN --- machine learning algorithms --- classification performance --- winter wheat mapping --- large-scale --- water stress --- Prunus avium L. --- stem water potential --- low-cost thermography --- thermal indexes --- canopy temperature --- non-water-stressed baselines --- non-transpiration baseline --- soil moisture --- andosols --- image processing --- greenhouse --- automatic tomato harvesting
Choose an application
Remote image capture systems are a key element in efficient and sustainable agriculture nowadays. They are increasingly being used to obtain information of interest from the crops, the soil and the environment. It includes different types of capturing devices: from satellites and drones, to in-field devices; different types of spectral information, from visible RGB images, to multispectral images; different types of applications; and different types of techniques in the areas of image processing, computer vision, pattern recognition and machine learning. This book covers all these aspects, through a series of chapters that describe specific recent applications of these techniques in interesting problems of agricultural engineering.
History of engineering & technology --- SVM --- budding rate --- UAV --- geometric consistency --- radiometric consistency --- point clouds --- ICP --- reflectance maps --- vegetation indices --- Parrot Sequoia --- artificial intelligence --- precision agriculture --- agricultural robot --- optimization algorithm --- online operation --- segmentation --- coffee leaf rust --- machine learning --- deep learning --- remote sensing --- Fourth Industrial Revolution --- Agriculture 4.0 --- failure strain --- sandstone --- digital image correlation --- Hill–Tsai failure criterion --- finite element method --- reference evapotranspiration --- moisture sensors --- machine learning regression --- frequency-domain reflectometry --- randomizable filtered classifier --- convolutional neural network --- U-Net --- land use --- banana plantation --- Panama TR4 --- aerial photography --- remote images --- systematic mapping study --- agriculture --- applications --- total leaf area --- mixed pixels --- Cabernet Sauvignon --- NDVI --- Normalized Difference Vegetation Index --- precision viticulture --- 3D model --- spatial vision --- fertirrigation --- teaching–learning --- spectrometry --- Sentinel-2 --- pasture quality index --- normalized difference vegetation index --- normalized difference water index --- supplementation --- decision making --- digital agriculture --- grape yield estimate --- berries counting --- Dilated CNN --- machine learning algorithms --- classification performance --- winter wheat mapping --- large-scale --- water stress --- Prunus avium L. --- stem water potential --- low-cost thermography --- thermal indexes --- canopy temperature --- non-water-stressed baselines --- non-transpiration baseline --- soil moisture --- andosols --- image processing --- greenhouse --- automatic tomato harvesting --- n/a --- Hill-Tsai failure criterion --- teaching-learning
Choose an application
Remote image capture systems are a key element in efficient and sustainable agriculture nowadays. They are increasingly being used to obtain information of interest from the crops, the soil and the environment. It includes different types of capturing devices: from satellites and drones, to in-field devices; different types of spectral information, from visible RGB images, to multispectral images; different types of applications; and different types of techniques in the areas of image processing, computer vision, pattern recognition and machine learning. This book covers all these aspects, through a series of chapters that describe specific recent applications of these techniques in interesting problems of agricultural engineering.
SVM --- budding rate --- UAV --- geometric consistency --- radiometric consistency --- point clouds --- ICP --- reflectance maps --- vegetation indices --- Parrot Sequoia --- artificial intelligence --- precision agriculture --- agricultural robot --- optimization algorithm --- online operation --- segmentation --- coffee leaf rust --- machine learning --- deep learning --- remote sensing --- Fourth Industrial Revolution --- Agriculture 4.0 --- failure strain --- sandstone --- digital image correlation --- Hill–Tsai failure criterion --- finite element method --- reference evapotranspiration --- moisture sensors --- machine learning regression --- frequency-domain reflectometry --- randomizable filtered classifier --- convolutional neural network --- U-Net --- land use --- banana plantation --- Panama TR4 --- aerial photography --- remote images --- systematic mapping study --- agriculture --- applications --- total leaf area --- mixed pixels --- Cabernet Sauvignon --- NDVI --- Normalized Difference Vegetation Index --- precision viticulture --- 3D model --- spatial vision --- fertirrigation --- teaching–learning --- spectrometry --- Sentinel-2 --- pasture quality index --- normalized difference vegetation index --- normalized difference water index --- supplementation --- decision making --- digital agriculture --- grape yield estimate --- berries counting --- Dilated CNN --- machine learning algorithms --- classification performance --- winter wheat mapping --- large-scale --- water stress --- Prunus avium L. --- stem water potential --- low-cost thermography --- thermal indexes --- canopy temperature --- non-water-stressed baselines --- non-transpiration baseline --- soil moisture --- andosols --- image processing --- greenhouse --- automatic tomato harvesting --- n/a --- Hill-Tsai failure criterion --- teaching-learning
Choose an application
This book focuses on the fundamental and applied research of the non-destructive estimation and diagnosis of crop leaf and plant nitrogen status and in-season nitrogen management strategies based on leaf sensors, proximal canopy sensors, unmanned aerial vehicle remote sensing, manned aerial remote sensing and satellite remote sensing technologies. Statistical and machine learning methods are used to predict plant-nitrogen-related parameters with sensor data or sensor data together with soil, landscape, weather and/or management information. Different sensing technologies or different modelling approaches are compared and evaluated. Strategies are developed to use crop sensing data for in-season nitrogen recommendations to improve nitrogen use efficiency and protect the environment.
Technology: general issues --- History of engineering & technology --- Environmental science, engineering & technology --- UAS --- multiple sensors --- vegetation index --- leaf nitrogen accumulation --- plant nitrogen accumulation --- pasture quality --- airborne hyperspectral imaging --- random forest regression --- sun-induced chlorophyll fluorescence (SIF) --- SIF yield indices --- upward --- downward --- leaf nitrogen concentration (LNC) --- wheat (Triticum aestivum L.) --- laser-induced fluorescence --- leaf nitrogen concentration --- back-propagation neural network --- principal component analysis --- fluorescence characteristics --- canopy nitrogen density --- radiative transfer model --- hyperspectral --- winter wheat --- flooded rice --- pig slurry --- aerial remote sensing --- vegetation indices --- N recommendation approach --- Mediterranean conditions --- nitrogen --- vertical distribution --- plant geometry --- remote sensing --- maize --- UAV --- multispectral imagery --- LNC --- non-parametric regression --- red-edge --- NDRE --- dynamic change model --- sigmoid curve --- grain yield prediction --- leaf chlorophyll content --- red-edge reflectance --- spectral index --- precision N fertilization --- chlorophyll meter --- NDVI --- NNI --- canopy reflectance sensing --- N mineralization --- farmyard manures --- Triticum aestivum --- discrete wavelet transform --- partial least squares --- hyper-spectra --- rice --- nitrogen management --- reflectance index --- multiple variable linear regression --- Lasso model --- Multiplex®3 sensor --- nitrogen balance index --- nitrogen nutrition index --- nitrogen status diagnosis --- precision nitrogen management --- terrestrial laser scanning --- spectrometer --- plant height --- biomass --- nitrogen concentration --- precision agriculture --- unmanned aerial vehicle (UAV) --- digital camera --- leaf chlorophyll concentration --- portable chlorophyll meter --- crop --- PROSPECT-D --- sensitivity analysis --- UAV multispectral imagery --- spectral vegetation indices --- machine learning --- plant nutrition --- canopy spectrum --- non-destructive nitrogen status diagnosis --- drone --- multispectral camera --- SPAD --- smartphone photography --- fixed-wing UAV remote sensing --- random forest --- canopy reflectance --- crop N status --- Capsicum annuum --- proximal optical sensors --- Dualex sensor --- leaf position --- proximal sensing --- cross-validation --- feature selection --- hyperparameter tuning --- image processing --- image segmentation --- nitrogen fertilizer recommendation --- supervised regression --- RapidSCAN sensor --- nitrogen recommendation algorithm --- in-season nitrogen management --- nitrogen use efficiency --- yield potential --- yield responsiveness --- standard normal variate (SNV) --- continuous wavelet transform (CWT) --- wavelet features optimization --- competitive adaptive reweighted sampling (CARS) --- partial least square (PLS) --- grapevine --- hyperparameter optimization --- multispectral imaging --- precision viticulture --- RGB --- multispectral --- coverage adjusted spectral index --- vegetation coverage --- random frog algorithm --- active canopy sensing --- integrated sensing system --- discrete NIR spectral band data --- soil total nitrogen concentration --- moisture absorption correction index --- particle size correction index --- coupled elimination
Listing 1 - 4 of 4 |
Sort by
|