Listing 1 - 5 of 5 |
Sort by
|
Choose an application
Starting from a kinase of interest, AMP-activated protein kinase (AMPK) has gone far beyond an average biomolecule. Being expressed in all mammalian cell types and probably having a counterpart in every eukaryotic cell, AMPK has attracted interest in virtually all areas of biological research. Structural and biophysical insights have greatly contributed to a molecular understanding of this kinase. From good old protein biochemistry to modern approaches, such as systems biology and advanced microscopy, all disciplines have provided important information. Thus, multiple links to cellular events and subcellular localizations have been established. Moreover, the crucial involvement of AMPK in human health and disease has been evidenced. AMPK accordingly has moved from an interesting enzyme to a pharmacological target. However, despite our extensive current knowledge about AMPK, the growing community is busier than ever. This book provides a snapshot of recent and current AMPK research with an emphasis on work providing molecular insight, including but not limited to novel physiological and pathological functions, or regulatory mechanisms. Up-to-date reviews and research articles are included.
n/a --- HDACs --- transcription --- epigenetics --- spermatozoa --- par complex --- A769662 --- MDCK --- skeletal muscle --- AID --- phosphorylation --- energy metabolism --- monocytes --- autophagy --- CML --- liver --- hindlimb suspension --- pregnancy --- preeclampsia --- gestational diabetes mellitus --- CaMKK2 --- assisted reproduction techniques --- nutrient-sensing signals --- sonic hedgehog --- protein acetylation --- glycogen storage disease --- AMPK --- adenosine monophosphate-activated protein kinase --- AICAR --- indirect calorimetry --- IL-1? --- MyHC I(?) --- HDAC4/5 --- endothelial cells --- infection --- hepatocyte --- p70S6K --- lipid metabolism --- host defense --- exercise --- kidney disease --- heat shock protein --- ?RIM --- mycobacteria --- activation loop --- developmental origins of health and disease (DOHaD) --- CREB --- TAK1 --- metabolic-inflammation --- phenylephrine --- AMP-activated protein kinase (AMPK) --- KATs --- 2-methoxyestradiol --- DNA methylation --- NLRP3 --- pump --- ?-linker --- steatosis --- AMPK kinase --- stress --- endothelial nitric-oxide synthase --- vasodilation --- adherent junctions --- epithelial cells --- glycogen --- Akt --- synaptic activation --- cellular energy sensing --- glucose uptake --- transporter --- co-expression --- atrophy --- nutrigenomics --- motility --- vasoconstriction --- fatty acid oxidation --- oxidative stress --- AS160 --- membrane --- histone modification --- sirtuin 1 (SIRT1) --- chromatin remodeling --- insulin signalling --- dietary fatty acids --- ULK --- CMML --- adaptive thermogenesis --- mTOR --- MDS --- mechanical unloading --- AML --- endothelial function --- medulloblastoma --- PKA --- adipose tissue --- NAD+ --- membranes --- nutrition --- ZO-1 --- TBC1D4 --- adipocyte --- soluble Adenylyl cyclase --- metabolism --- renin-angiotensin system --- energy utilization --- proteasome --- differentiation --- signaling --- peroxisome proliferator-activated receptor gamma coactivator 1-? (PGC1?) --- hypertrophy --- AMP-activated protein kinase --- metabolic disease --- LKB1 --- soleus muscle --- macrophages --- Immediate early genes --- CBS --- beiging --- motor endplate remodeling --- ionomycin --- nectin-afadin --- tight junctions --- resveratrol --- protein kinase B --- regrowth --- mitochondria --- protein synthesis --- energy deficiency --- catechol-O-methyltransferase --- fiber-type --- microarrays --- carrier --- acetyl-CoA --- hypertension --- 3T3-L1 --- hypothalamus --- food intake --- benign
Choose an application
Following the implementation of next-generation sequencing technologies (e.g., exome and genome sequencing) in molecular diagnostics, the majority of genetic defects underlying inherited retinal disease (IRD) can readily be identified. In parallel, opportunities to counteract the molecular consequences of these defects are rapidly emerging, providing hope for personalized medicine. ‘Classical’ gene augmentation therapy has been under study for several genetic subtypes of IRD and can be considered a safe and sometimes effective therapeutic strategy. The recent market approval of the first retinal gene augmentation therapy product (LuxturnaTM, for individuals with bi-allelic RPE65 mutations) by the FDA has not only demonstrated the potential of this specific approach, but also opened avenues for the development of other strategies. However, every gene—or even every mutation—may need a tailor-made therapeutic approach, in order to obtain the most efficacious strategy with minimal risks associated. In addition to gene augmentation therapy, other subtypes of molecular therapy are currently being designed and/or implemented, including splice modulation, DNA or RNA editing, optogenetics and pharmacological modulation. In addition, the development of proper delivery vectors has gained strong attention, and should not be overlooked when designing and testing a novel therapeutic approach. In this Special Issue, we aim to describe the current state of the art of molecular therapeutics for IRD, and discuss existing and novel therapeutic strategies, from idea to implementation, and from bench to bedside.
induced pluripotent stem cell (iPSC) --- clustered regularly interspaced short palindromic repeats (CRISPR) --- homology-directed repair (HDR) --- Enhanced S-Cone Syndrome (ESCS) --- NR2E3 --- AAV --- retina --- gene therapy --- dual AAV --- gold nanoparticles --- DNA-wrapped gold nanoparticles --- ARPE-19 cells --- retinal pigment epithelium --- clathrin-coated vesicles --- endosomal trafficking --- retinitis pigmentosa --- autosomal dominant --- G56R --- putative dominant negative effect --- gapmer antisense oligonucleotides --- allele-specific knockdown --- Leber congenital amaurosis and allied retinal ciliopathies --- CEP290 --- Flanders founder c.4723A > --- T nonsense mutation --- Cilia elongation --- spontaneous nonsense correction --- AON-mediated exon skipping --- microRNA --- photoreceptors --- rods --- cones --- bipolar cells --- Müller glia --- retinal inherited disorders --- retinal degeneration --- antisense oligonucleotides --- Stargardt disease --- inherited retinal diseases --- splicing modulation --- RNA therapy --- ABCA4 --- iPSC-derived photoreceptor precursor cells --- cyclic GMP --- apoptosis --- necrosis --- drug delivery systems --- translational medicine --- Usher syndrome --- Leber congenital amaurosis --- RPE65 --- nonprofit --- patient registry --- translational --- protein trafficking --- protein folding --- protein degradation --- chaperones --- chaperonins --- heat shock response --- unfolded protein response --- autophagy --- therapy --- IRD --- DNA therapies --- RNA therapies --- compound therapies --- clinical trials --- Retinitis Pigmentosa GTPase Regulator --- adeno-associated viral --- Retinitis Pigmentosa (RP) --- choroideremia --- REP1 --- inherited retinal disease --- treatment --- apical polarity --- crumbs complex --- fetal retina --- PAR complex --- retinal organoids --- retinogenesis --- gene augmentation --- adeno-associated virus (AAV) --- n/a --- Müller glia
Choose an application
Starting from a kinase of interest, AMP-activated protein kinase (AMPK) has gone far beyond an average biomolecule. Being expressed in all mammalian cell types and probably having a counterpart in every eukaryotic cell, AMPK has attracted interest in virtually all areas of biological research. Structural and biophysical insights have greatly contributed to a molecular understanding of this kinase. From good old protein biochemistry to modern approaches, such as systems biology and advanced microscopy, all disciplines have provided important information. Thus, multiple links to cellular events and subcellular localizations have been established. Moreover, the crucial involvement of AMPK in human health and disease has been evidenced. AMPK accordingly has moved from an interesting enzyme to a pharmacological target. However, despite our extensive current knowledge about AMPK, the growing community is busier than ever. This book provides a snapshot of recent and current AMPK research with an emphasis on work providing molecular insight, including but not limited to novel physiological and pathological functions, or regulatory mechanisms. Up-to-date reviews and research articles are included.
n/a --- HDACs --- transcription --- epigenetics --- spermatozoa --- par complex --- A769662 --- MDCK --- skeletal muscle --- AID --- phosphorylation --- energy metabolism --- monocytes --- autophagy --- CML --- liver --- hindlimb suspension --- pregnancy --- preeclampsia --- gestational diabetes mellitus --- CaMKK2 --- assisted reproduction techniques --- nutrient-sensing signals --- sonic hedgehog --- protein acetylation --- glycogen storage disease --- AMPK --- adenosine monophosphate-activated protein kinase --- AICAR --- indirect calorimetry --- IL-1? --- MyHC I(?) --- HDAC4/5 --- endothelial cells --- infection --- hepatocyte --- p70S6K --- lipid metabolism --- host defense --- exercise --- kidney disease --- heat shock protein --- ?RIM --- mycobacteria --- activation loop --- developmental origins of health and disease (DOHaD) --- CREB --- TAK1 --- metabolic-inflammation --- phenylephrine --- AMP-activated protein kinase (AMPK) --- KATs --- 2-methoxyestradiol --- DNA methylation --- NLRP3 --- pump --- ?-linker --- steatosis --- AMPK kinase --- stress --- endothelial nitric-oxide synthase --- vasodilation --- adherent junctions --- epithelial cells --- glycogen --- Akt --- synaptic activation --- cellular energy sensing --- glucose uptake --- transporter --- co-expression --- atrophy --- nutrigenomics --- motility --- vasoconstriction --- fatty acid oxidation --- oxidative stress --- AS160 --- membrane --- histone modification --- sirtuin 1 (SIRT1) --- chromatin remodeling --- insulin signalling --- dietary fatty acids --- ULK --- CMML --- adaptive thermogenesis --- mTOR --- MDS --- mechanical unloading --- AML --- endothelial function --- medulloblastoma --- PKA --- adipose tissue --- NAD+ --- membranes --- nutrition --- ZO-1 --- TBC1D4 --- adipocyte --- soluble Adenylyl cyclase --- metabolism --- renin-angiotensin system --- energy utilization --- proteasome --- differentiation --- signaling --- peroxisome proliferator-activated receptor gamma coactivator 1-? (PGC1?) --- hypertrophy --- AMP-activated protein kinase --- metabolic disease --- LKB1 --- soleus muscle --- macrophages --- Immediate early genes --- CBS --- beiging --- motor endplate remodeling --- ionomycin --- nectin-afadin --- tight junctions --- resveratrol --- protein kinase B --- regrowth --- mitochondria --- protein synthesis --- energy deficiency --- catechol-O-methyltransferase --- fiber-type --- microarrays --- carrier --- acetyl-CoA --- hypertension --- 3T3-L1 --- hypothalamus --- food intake --- benign
Choose an application
Following the implementation of next-generation sequencing technologies (e.g., exome and genome sequencing) in molecular diagnostics, the majority of genetic defects underlying inherited retinal disease (IRD) can readily be identified. In parallel, opportunities to counteract the molecular consequences of these defects are rapidly emerging, providing hope for personalized medicine. ‘Classical’ gene augmentation therapy has been under study for several genetic subtypes of IRD and can be considered a safe and sometimes effective therapeutic strategy. The recent market approval of the first retinal gene augmentation therapy product (LuxturnaTM, for individuals with bi-allelic RPE65 mutations) by the FDA has not only demonstrated the potential of this specific approach, but also opened avenues for the development of other strategies. However, every gene—or even every mutation—may need a tailor-made therapeutic approach, in order to obtain the most efficacious strategy with minimal risks associated. In addition to gene augmentation therapy, other subtypes of molecular therapy are currently being designed and/or implemented, including splice modulation, DNA or RNA editing, optogenetics and pharmacological modulation. In addition, the development of proper delivery vectors has gained strong attention, and should not be overlooked when designing and testing a novel therapeutic approach. In this Special Issue, we aim to describe the current state of the art of molecular therapeutics for IRD, and discuss existing and novel therapeutic strategies, from idea to implementation, and from bench to bedside.
Research & information: general --- Biology, life sciences --- induced pluripotent stem cell (iPSC) --- clustered regularly interspaced short palindromic repeats (CRISPR) --- homology-directed repair (HDR) --- Enhanced S-Cone Syndrome (ESCS) --- NR2E3 --- AAV --- retina --- gene therapy --- dual AAV --- gold nanoparticles --- DNA-wrapped gold nanoparticles --- ARPE-19 cells --- retinal pigment epithelium --- clathrin-coated vesicles --- endosomal trafficking --- retinitis pigmentosa --- autosomal dominant --- G56R --- putative dominant negative effect --- gapmer antisense oligonucleotides --- allele-specific knockdown --- Leber congenital amaurosis and allied retinal ciliopathies --- CEP290 --- Flanders founder c.4723A > --- T nonsense mutation --- Cilia elongation --- spontaneous nonsense correction --- AON-mediated exon skipping --- microRNA --- photoreceptors --- rods --- cones --- bipolar cells --- Müller glia --- retinal inherited disorders --- retinal degeneration --- antisense oligonucleotides --- Stargardt disease --- inherited retinal diseases --- splicing modulation --- RNA therapy --- ABCA4 --- iPSC-derived photoreceptor precursor cells --- cyclic GMP --- apoptosis --- necrosis --- drug delivery systems --- translational medicine --- Usher syndrome --- Leber congenital amaurosis --- RPE65 --- nonprofit --- patient registry --- translational --- protein trafficking --- protein folding --- protein degradation --- chaperones --- chaperonins --- heat shock response --- unfolded protein response --- autophagy --- therapy --- IRD --- DNA therapies --- RNA therapies --- compound therapies --- clinical trials --- Retinitis Pigmentosa GTPase Regulator --- adeno-associated viral --- Retinitis Pigmentosa (RP) --- choroideremia --- REP1 --- inherited retinal disease --- treatment --- apical polarity --- crumbs complex --- fetal retina --- PAR complex --- retinal organoids --- retinogenesis --- gene augmentation --- adeno-associated virus (AAV)
Choose an application
Starting from a kinase of interest, AMP-activated protein kinase (AMPK) has gone far beyond an average biomolecule. Being expressed in all mammalian cell types and probably having a counterpart in every eukaryotic cell, AMPK has attracted interest in virtually all areas of biological research. Structural and biophysical insights have greatly contributed to a molecular understanding of this kinase. From good old protein biochemistry to modern approaches, such as systems biology and advanced microscopy, all disciplines have provided important information. Thus, multiple links to cellular events and subcellular localizations have been established. Moreover, the crucial involvement of AMPK in human health and disease has been evidenced. AMPK accordingly has moved from an interesting enzyme to a pharmacological target. However, despite our extensive current knowledge about AMPK, the growing community is busier than ever. This book provides a snapshot of recent and current AMPK research with an emphasis on work providing molecular insight, including but not limited to novel physiological and pathological functions, or regulatory mechanisms. Up-to-date reviews and research articles are included.
HDACs --- transcription --- epigenetics --- spermatozoa --- par complex --- A769662 --- MDCK --- skeletal muscle --- AID --- phosphorylation --- energy metabolism --- monocytes --- autophagy --- CML --- liver --- hindlimb suspension --- pregnancy --- preeclampsia --- gestational diabetes mellitus --- CaMKK2 --- assisted reproduction techniques --- nutrient-sensing signals --- sonic hedgehog --- protein acetylation --- glycogen storage disease --- AMPK --- adenosine monophosphate-activated protein kinase --- AICAR --- indirect calorimetry --- IL-1? --- MyHC I(?) --- HDAC4/5 --- endothelial cells --- infection --- hepatocyte --- p70S6K --- lipid metabolism --- host defense --- exercise --- kidney disease --- heat shock protein --- ?RIM --- mycobacteria --- activation loop --- developmental origins of health and disease (DOHaD) --- CREB --- TAK1 --- metabolic-inflammation --- phenylephrine --- AMP-activated protein kinase (AMPK) --- KATs --- 2-methoxyestradiol --- DNA methylation --- NLRP3 --- pump --- ?-linker --- steatosis --- AMPK kinase --- stress --- endothelial nitric-oxide synthase --- vasodilation --- adherent junctions --- epithelial cells --- glycogen --- Akt --- synaptic activation --- cellular energy sensing --- glucose uptake --- transporter --- co-expression --- atrophy --- nutrigenomics --- motility --- vasoconstriction --- fatty acid oxidation --- oxidative stress --- AS160 --- membrane --- histone modification --- sirtuin 1 (SIRT1) --- chromatin remodeling --- insulin signalling --- dietary fatty acids --- ULK --- CMML --- adaptive thermogenesis --- mTOR --- MDS --- mechanical unloading --- AML --- endothelial function --- medulloblastoma --- PKA --- adipose tissue --- NAD+ --- membranes --- nutrition --- ZO-1 --- TBC1D4 --- adipocyte --- soluble Adenylyl cyclase --- metabolism --- renin-angiotensin system --- energy utilization --- proteasome --- differentiation --- signaling --- peroxisome proliferator-activated receptor gamma coactivator 1-? (PGC1?) --- hypertrophy --- AMP-activated protein kinase --- metabolic disease --- LKB1 --- soleus muscle --- macrophages --- Immediate early genes --- CBS --- benign --- motor endplate remodeling --- ionomycin --- nectin-afadin --- tight junctions --- resveratrol --- protein kinase B --- regrowth --- mitochondria --- protein synthesis --- energy deficiency --- catechol-O-methyltransferase --- fiber-type --- microarrays --- carrier --- acetyl-CoA --- hypertension --- 3T3-L1 --- hypothalamus --- food intake
Listing 1 - 5 of 5 |
Sort by
|