Listing 1 - 9 of 9 |
Sort by
|
Choose an application
"This book represents the most complete guidance on the design, installation, and operation and management of DOAS in nonresidential applications. With this book, any HVAC designer will be able to optimally incorporate a DOAS into their design. Architectural designers, building developers and owners, maintenance professionals, students, teachers, and researchers may also find the contents useful"--
Dedicated outdoor air systems --- Industrial buildings --- Air conditioning --- DOASs (Dedicated outdoor air systems) --- Outdoor air systems, Dedicated --- Heating --- Ventilation --- Buildings
Choose an application
This book is a collection of the articles published the Special Issue of ISPRS International Journal of Geo-Information on “Citizen Science and Geospatial Capacity Building”. The articles cover a wide range of topics regarding the applications of citizen science from a geospatial technology perspective. Several applications show the importance of Citizen Science (CitSci) and volunteered geographic information (VGI) in various stages of geodata collection, processing, analysis and visualization; and for demonstrating the capabilities, which are covered in the book. Particular emphasis is given to various problems encountered in the CitSci and VGI projects with a geospatial aspect, such as platform, tool and interface design, ontology development, spatial analysis and data quality assessment. The book also points out the needs and future research directions in these subjects, such as; (a) data quality issues especially in the light of big data; (b) ontology studies for geospatial data suited for diverse user backgrounds, data integration, and sharing; (c) development of machine learning and artificial intelligence based online tools for pattern recognition and object identification using existing repositories of CitSci and VGI projects; and (d) open science and open data practices for increasing the efficiency, decreasing the redundancy, and acknowledgement of all stakeholders.
Research & information: general --- participatory toponyms --- knowledge sharing --- public participation --- citizen science --- geospatial capacity building --- volunteered geographic information --- social media --- spatiotemporal bias --- CitSci --- earthquake --- intensity mapping --- disaster mitigation --- spatial kriging --- volunteered geographic information (VGI) --- data contribution activities --- spatial and temporal patterns --- biases --- eBird --- community-based geoportal --- crowdsourced earth observation product --- remote sensing --- spatial data infrastructure (SDI) --- crowdsourced data quality --- GeoWeb --- outdoor air pollution --- symptom mapping --- data quality --- web application --- water quality --- community-based monitoring --- machine learning --- Indian monsoon --- Jacobin cuckoo --- Maxent --- species distribution model --- habitat suitability --- range expansion --- WorldClim --- CMIP --- crowdsourcing --- participatory GIS
Choose an application
This book is a collection of the articles published the Special Issue of ISPRS International Journal of Geo-Information on “Citizen Science and Geospatial Capacity Building”. The articles cover a wide range of topics regarding the applications of citizen science from a geospatial technology perspective. Several applications show the importance of Citizen Science (CitSci) and volunteered geographic information (VGI) in various stages of geodata collection, processing, analysis and visualization; and for demonstrating the capabilities, which are covered in the book. Particular emphasis is given to various problems encountered in the CitSci and VGI projects with a geospatial aspect, such as platform, tool and interface design, ontology development, spatial analysis and data quality assessment. The book also points out the needs and future research directions in these subjects, such as; (a) data quality issues especially in the light of big data; (b) ontology studies for geospatial data suited for diverse user backgrounds, data integration, and sharing; (c) development of machine learning and artificial intelligence based online tools for pattern recognition and object identification using existing repositories of CitSci and VGI projects; and (d) open science and open data practices for increasing the efficiency, decreasing the redundancy, and acknowledgement of all stakeholders.
participatory toponyms --- knowledge sharing --- public participation --- citizen science --- geospatial capacity building --- volunteered geographic information --- social media --- spatiotemporal bias --- CitSci --- earthquake --- intensity mapping --- disaster mitigation --- spatial kriging --- volunteered geographic information (VGI) --- data contribution activities --- spatial and temporal patterns --- biases --- eBird --- community-based geoportal --- crowdsourced earth observation product --- remote sensing --- spatial data infrastructure (SDI) --- crowdsourced data quality --- GeoWeb --- outdoor air pollution --- symptom mapping --- data quality --- web application --- water quality --- community-based monitoring --- machine learning --- Indian monsoon --- Jacobin cuckoo --- Maxent --- species distribution model --- habitat suitability --- range expansion --- WorldClim --- CMIP --- crowdsourcing --- participatory GIS
Choose an application
The paper aims to provide the basis for an estimation equation and will focus on the relation between transport emissions and air quality in an urban environment. This is directly related to the fact that most health impacts are related to local air quality levels. The aim of the paper is to create an understanding of the factors that play a role in the causal relation between transport emissions and health effects and provides approximations from existing studies that can be used to assess these health impacts and related costs. The paper focuses on the translation of air pollution levels into health impacts and health costs. The overall structure of the paper follows the two key steps and elaborates on the inherent challenges: (1) identify and measure the health effects of air pollution, and (2) to estimate the costs of the health effects. The paper is divided into four chapters: chapter one is introduction- outlining the goals and background to the project; chapter two gives impacts of air pollution from transport on health; chapter three presents valuation of health impacts- reviews the literature on how to value the impacts on health associated with air pollution; and chapter four gives guidelines for calculating the health effects of air pollution from traffic.
Acid Rain --- Adolescents --- Aerosols --- Air Pollution --- Air Quality & Clean Air --- Breast Cancer --- Brown Issues and Health --- Child Care --- Childbirth --- Clean Air --- Cohort Studies --- Cost-Benefit analysis --- Deforestation --- Developing Countries --- Environment --- Environmental Health --- Epidemiology --- Family Planning --- Fertility --- Fossil Fuels --- Fuels --- Gross National Income --- Health Monitoring & Evaluation --- Health Outcomes --- Health, Nutrition and Population --- Indoor Air Pollution --- Leukemia --- Life Expectancy --- Morbidity --- Mortality --- Mortality Rate --- Nutrition --- Outdoor Air Pollution --- Particulate Matter --- Population Density --- Pregnancy --- Public Health --- Purchasing Power --- Purchasing Power Parity --- Quality of Life --- Respect --- Roads --- Sanitation --- Transport --- Urban Areas --- Urbanization --- Vehicle Emissions --- Vehicles --- Waste --- Workers
Choose an application
This book is a collection of the articles published the Special Issue of ISPRS International Journal of Geo-Information on “Citizen Science and Geospatial Capacity Building”. The articles cover a wide range of topics regarding the applications of citizen science from a geospatial technology perspective. Several applications show the importance of Citizen Science (CitSci) and volunteered geographic information (VGI) in various stages of geodata collection, processing, analysis and visualization; and for demonstrating the capabilities, which are covered in the book. Particular emphasis is given to various problems encountered in the CitSci and VGI projects with a geospatial aspect, such as platform, tool and interface design, ontology development, spatial analysis and data quality assessment. The book also points out the needs and future research directions in these subjects, such as; (a) data quality issues especially in the light of big data; (b) ontology studies for geospatial data suited for diverse user backgrounds, data integration, and sharing; (c) development of machine learning and artificial intelligence based online tools for pattern recognition and object identification using existing repositories of CitSci and VGI projects; and (d) open science and open data practices for increasing the efficiency, decreasing the redundancy, and acknowledgement of all stakeholders.
Research & information: general --- participatory toponyms --- knowledge sharing --- public participation --- citizen science --- geospatial capacity building --- volunteered geographic information --- social media --- spatiotemporal bias --- CitSci --- earthquake --- intensity mapping --- disaster mitigation --- spatial kriging --- volunteered geographic information (VGI) --- data contribution activities --- spatial and temporal patterns --- biases --- eBird --- community-based geoportal --- crowdsourced earth observation product --- remote sensing --- spatial data infrastructure (SDI) --- crowdsourced data quality --- GeoWeb --- outdoor air pollution --- symptom mapping --- data quality --- web application --- water quality --- community-based monitoring --- machine learning --- Indian monsoon --- Jacobin cuckoo --- Maxent --- species distribution model --- habitat suitability --- range expansion --- WorldClim --- CMIP --- crowdsourcing --- participatory GIS --- participatory toponyms --- knowledge sharing --- public participation --- citizen science --- geospatial capacity building --- volunteered geographic information --- social media --- spatiotemporal bias --- CitSci --- earthquake --- intensity mapping --- disaster mitigation --- spatial kriging --- volunteered geographic information (VGI) --- data contribution activities --- spatial and temporal patterns --- biases --- eBird --- community-based geoportal --- crowdsourced earth observation product --- remote sensing --- spatial data infrastructure (SDI) --- crowdsourced data quality --- GeoWeb --- outdoor air pollution --- symptom mapping --- data quality --- web application --- water quality --- community-based monitoring --- machine learning --- Indian monsoon --- Jacobin cuckoo --- Maxent --- species distribution model --- habitat suitability --- range expansion --- WorldClim --- CMIP --- crowdsourcing --- participatory GIS
Choose an application
The raw materials industry is widely considered to be too environmentally costly, and causing more losses than benefits. The responsible solving of the problems caused by this industry is not “exporting” its operations to less developed countries, but addressing all recognized hazards with dedicated technological developments. Such an approach is presented by the authors of this book. The contributions deal with the optimization of processes in the raw materials industry, obtaining energy from alternative fuels, researching the environmental aspects of industrial activities. This book determines some guidelines for the sustainable raw materials industry, describing methods of the optimized use of mined deposits and the recovery of materials, reductions in energy consumption and the recuperation of energy, minimizations in the emissions of pollutants, the perfection of quieter and safer processes, and the facilitation of modern materials-, water-, and energy-related techniques and technologies.
Technology: general issues --- History of engineering & technology --- acid leaching --- battery recycling --- Li-ion batteries --- metal recovery --- raw material sustainable use --- sieving screen --- inertial vibrator --- dual-frequency --- spectrum --- FEM simulation --- biomass ash --- coal ash --- sintering --- mechanical test --- pressure drop test --- slagging --- fouling --- ion flotation --- used batteries --- ecological safety --- recovery --- Zn(II) --- Mn(II) --- belt conveyor --- prosumer --- downhill transport of overburden --- specific energy consumption --- recuperation --- energy recovery rate --- air quality monitoring --- SO2 --- VOC --- H2S --- PM10 --- PM2.5 --- PM1.0 --- outdoor air quality --- air flow aerodynamics --- street canyon --- digestate --- biogas plant --- hydrothermal carbonisation --- membrane processes --- water recovery --- thermal lag --- fossil fuels --- pyrolysis --- TG --- thermal analysis --- power --- powered roof support --- hydraulic leg --- bench testing --- dynamic load --- discrete event simulation --- quarry --- mine machine --- cost of production --- fire-side corrosion --- boiler tube wastage --- diagnostics --- industrial-scale boilers --- non-destructive inspection --- pipe inspection --- wall thickness measurement --- stone waste --- waste generation --- waste recycling --- industrial waste treatment --- sustainable manufacturing --- dimension natural stone processing --- GHG emissions --- stable isotopes --- waste management --- energy recovery --- unburned carbon --- fly ash --- activated carbon --- adsorption kinetics --- statistical regression --- sustainable mining --- heating and energy processes --- raw material sustainable-use fossil fuels --- energy conversion and storage --- air pollution --- emission reduction methods --- purification and removal techniques --- acid leaching --- battery recycling --- Li-ion batteries --- metal recovery --- raw material sustainable use --- sieving screen --- inertial vibrator --- dual-frequency --- spectrum --- FEM simulation --- biomass ash --- coal ash --- sintering --- mechanical test --- pressure drop test --- slagging --- fouling --- ion flotation --- used batteries --- ecological safety --- recovery --- Zn(II) --- Mn(II) --- belt conveyor --- prosumer --- downhill transport of overburden --- specific energy consumption --- recuperation --- energy recovery rate --- air quality monitoring --- SO2 --- VOC --- H2S --- PM10 --- PM2.5 --- PM1.0 --- outdoor air quality --- air flow aerodynamics --- street canyon --- digestate --- biogas plant --- hydrothermal carbonisation --- membrane processes --- water recovery --- thermal lag --- fossil fuels --- pyrolysis --- TG --- thermal analysis --- power --- powered roof support --- hydraulic leg --- bench testing --- dynamic load --- discrete event simulation --- quarry --- mine machine --- cost of production --- fire-side corrosion --- boiler tube wastage --- diagnostics --- industrial-scale boilers --- non-destructive inspection --- pipe inspection --- wall thickness measurement --- stone waste --- waste generation --- waste recycling --- industrial waste treatment --- sustainable manufacturing --- dimension natural stone processing --- GHG emissions --- stable isotopes --- waste management --- energy recovery --- unburned carbon --- fly ash --- activated carbon --- adsorption kinetics --- statistical regression --- sustainable mining --- heating and energy processes --- raw material sustainable-use fossil fuels --- energy conversion and storage --- air pollution --- emission reduction methods --- purification and removal techniques
Choose an application
HVAC systems, load shifting, indoor climate, and energy and ventilation performance analyses are the key topics when improving energy performance in new and renovated buildings. This development has been boosted by the recently established nearly zero energy building requirements that will soon be in use in all EU Member States, as well as similar long-term zero energy building targets in Japan, the US, and other countries. The research covered in this Special Issue provides evidence of how new technical solutions have worked, in practice, in new or renovated buildings, and also discusses problems and how solutions should be further developed. Another focus is on the more detailed calculation methods needed for the correct design and sizing of dedicated systems, and for accurate quantification of energy savings. Occupant behavior and building operation is also examined, in order to avoid common performance gaps between calculated and measured performance. These topics demonstrate the challenge of high performance buildings as, in the end, comfortable buildings with good indoor climate which are easy and cheap to operate and maintain are expected by end customers. Ventilation performance, heating and cooling, sizing, energy predictions and optimization, load shifting, and field studies are some of the key topics in this Special Issue, contributing to the future of high performance buildings with reliable operation.
indoor air quality --- stratification --- chiller plants --- alternate operation --- displacement ventilation --- draught rate --- building --- indoor temperature after renovation --- DHW heating --- daylight factor --- energy --- energy performance modeling --- hybrid displacement device --- building energy modelling --- energy performance of buildings directive --- condenser evaporative precooling --- DHW energy use --- heating mode --- ground source heat pump --- personalized ventilation --- daylight --- existing buildings --- optimal energy management --- cooling --- mixing ventilation --- daylight survey --- user behavior --- local air change effectiveness --- basketball hall --- CFD --- sizing --- electricity use --- control strategy --- HVAC systems --- ventilation --- occupant behavior --- smart readiness indicator --- energy signature --- standard use --- building energy simulation --- outdoor air --- monitoring measurements --- COP --- qualitative control --- wind pressure --- decentralized ventilation unit --- field measurement --- thermal comfort --- student dormitories --- data-driven analysis --- energy performance --- daylight simulations --- air jet --- ISO 52016-1 --- multiple sensor nodes --- downdraught --- energy efficiency --- building pressure condition --- meteorological reanalysis data --- ISO 7730 --- thermal analysis --- Monte Carlo method --- corner impinging jet --- greenhouse --- Pro-GET-onE H2020 --- in situ measurements --- smart buildings --- skin temperature --- retirement home --- demand side management --- indoor climate --- user input data --- Indoor Environmental Quality (IEQ) --- ventilation renovation --- tracer gas --- gray box --- Jaya algorithm --- single room ventilation unit --- satellite-based solar radiation data --- chiller performance --- rooftop air conditioners --- smart grid --- TRNSYS --- stack effect --- space heating --- energy flexibility --- corner mixing ventilation --- load shifting --- heating power --- air exchange effectiveness --- indoor temperature uniformity --- demand response
Choose an application
The raw materials industry is widely considered to be too environmentally costly, and causing more losses than benefits. The responsible solving of the problems caused by this industry is not “exporting” its operations to less developed countries, but addressing all recognized hazards with dedicated technological developments. Such an approach is presented by the authors of this book. The contributions deal with the optimization of processes in the raw materials industry, obtaining energy from alternative fuels, researching the environmental aspects of industrial activities. This book determines some guidelines for the sustainable raw materials industry, describing methods of the optimized use of mined deposits and the recovery of materials, reductions in energy consumption and the recuperation of energy, minimizations in the emissions of pollutants, the perfection of quieter and safer processes, and the facilitation of modern materials-, water-, and energy-related techniques and technologies.
Technology: general issues --- History of engineering & technology --- acid leaching --- battery recycling --- Li-ion batteries --- metal recovery --- raw material sustainable use --- sieving screen --- inertial vibrator --- dual-frequency --- spectrum --- FEM simulation --- biomass ash --- coal ash --- sintering --- mechanical test --- pressure drop test --- slagging --- fouling --- ion flotation --- used batteries --- ecological safety --- recovery --- Zn(II) --- Mn(II) --- belt conveyor --- prosumer --- downhill transport of overburden --- specific energy consumption --- recuperation --- energy recovery rate --- air quality monitoring --- SO2 --- VOC --- H2S --- PM10 --- PM2.5 --- PM1.0 --- outdoor air quality --- air flow aerodynamics --- street canyon --- digestate --- biogas plant --- hydrothermal carbonisation --- membrane processes --- water recovery --- thermal lag --- fossil fuels --- pyrolysis --- TG --- thermal analysis --- power --- powered roof support --- hydraulic leg --- bench testing --- dynamic load --- discrete event simulation --- quarry --- mine machine --- cost of production --- fire-side corrosion --- boiler tube wastage --- diagnostics --- industrial-scale boilers --- non-destructive inspection --- pipe inspection --- wall thickness measurement --- stone waste --- waste generation --- waste recycling --- industrial waste treatment --- sustainable manufacturing --- dimension natural stone processing --- GHG emissions --- stable isotopes --- waste management --- energy recovery --- unburned carbon --- fly ash --- activated carbon --- adsorption kinetics --- statistical regression --- sustainable mining --- heating and energy processes --- raw material sustainable-use fossil fuels --- energy conversion and storage --- air pollution --- emission reduction methods --- purification and removal techniques
Choose an application
The raw materials industry is widely considered to be too environmentally costly, and causing more losses than benefits. The responsible solving of the problems caused by this industry is not “exporting” its operations to less developed countries, but addressing all recognized hazards with dedicated technological developments. Such an approach is presented by the authors of this book. The contributions deal with the optimization of processes in the raw materials industry, obtaining energy from alternative fuels, researching the environmental aspects of industrial activities. This book determines some guidelines for the sustainable raw materials industry, describing methods of the optimized use of mined deposits and the recovery of materials, reductions in energy consumption and the recuperation of energy, minimizations in the emissions of pollutants, the perfection of quieter and safer processes, and the facilitation of modern materials-, water-, and energy-related techniques and technologies.
acid leaching --- battery recycling --- Li-ion batteries --- metal recovery --- raw material sustainable use --- sieving screen --- inertial vibrator --- dual-frequency --- spectrum --- FEM simulation --- biomass ash --- coal ash --- sintering --- mechanical test --- pressure drop test --- slagging --- fouling --- ion flotation --- used batteries --- ecological safety --- recovery --- Zn(II) --- Mn(II) --- belt conveyor --- prosumer --- downhill transport of overburden --- specific energy consumption --- recuperation --- energy recovery rate --- air quality monitoring --- SO2 --- VOC --- H2S --- PM10 --- PM2.5 --- PM1.0 --- outdoor air quality --- air flow aerodynamics --- street canyon --- digestate --- biogas plant --- hydrothermal carbonisation --- membrane processes --- water recovery --- thermal lag --- fossil fuels --- pyrolysis --- TG --- thermal analysis --- power --- powered roof support --- hydraulic leg --- bench testing --- dynamic load --- discrete event simulation --- quarry --- mine machine --- cost of production --- fire-side corrosion --- boiler tube wastage --- diagnostics --- industrial-scale boilers --- non-destructive inspection --- pipe inspection --- wall thickness measurement --- stone waste --- waste generation --- waste recycling --- industrial waste treatment --- sustainable manufacturing --- dimension natural stone processing --- GHG emissions --- stable isotopes --- waste management --- energy recovery --- unburned carbon --- fly ash --- activated carbon --- adsorption kinetics --- statistical regression --- sustainable mining --- heating and energy processes --- raw material sustainable-use fossil fuels --- energy conversion and storage --- air pollution --- emission reduction methods --- purification and removal techniques
Listing 1 - 9 of 9 |
Sort by
|