Narrow your search
Listing 1 - 8 of 8
Sort by

Dissertation
Bioponics : Recylcing goat and chicken manure into nutrient solution for hydroponics through aerobic and anaerobic digestion
Authors: --- --- --- --- --- et al.
Year: 2020 Publisher: Liège Université de Liège (ULiège)

Loading...
Export citation

Choose an application

Bookmark

Abstract

La culture hydroponique a montré, depuis son renouveau dans l'agriculture urbaine, ses nombreux avantages en termes d'espace, de productivité et d'économie d'eau. Malheureusement, elle présente un inconvénient majeur : sa dépendance aux engrais minéraux. La bioponie est une technique innovante qui vise à remplacer les engrais minéraux dans les systèmes hydroponiques par des engrais organiques. Les engrais organiques, à l'opposé des engrais minéraux, peuvent être fabriqués partout dans le monde. Ils trouvent donc une utilité directe dans les pays en voie de développement.
Ce travail a comme objectif d’évaluer les possibilités et l’efficacité d’un système de minéralisation de la matière organique permettant la création d’une solution nutritive à partir d’excréments de chèvres et de poules, élevages communément retrouvés en République Démocratique du Congo. Afin de réaliser cet objectif, plusieurs paramètres ont été étudiés comme la concentration en matière organique, le type de digestion (aérobie, anaérobie), la gestion du pH et le type de tampon utilisé. L'impact de ces paramètres sur le système a été analysé en étudiant le pH, la température, la CE et les concentrations de NPK libérés en solution. 
Les résultats de cette thèse de master ont permis la création d'un système de minéralisation fonctionnel de faible technicité qui permet la réplication du processus de digestion. Cependant, trois faiblesses ont également été identifiées : la chute des températures, les pertes de matière organique et la méthode d’échantillonnage. De plus, le processus de minéralisation effectué par le système n'est pas optimal. En effet, la nitrification de l'azote n'a pas eu lieu lors des expériences mises en place. En outre, l'équilibre entre les concentrations d'azote, de phosphore et de potassium n'est pas idéal pour une solution nutritive complète permettant une croissance optimale des plantes. En effet, les concentrations en NH4 et potassium sont respectivement 2 à 25 fois et 5 à 15 fois plus élevées que les valeurs retrouvées dans la littérature. A l’opposé, les concentrations en phosphore sont 5 à 15 fois plus faibles que les valeurs de la littérature. 
Cependant, malgré ces lacunes, plusieurs conclusions intéressantes ont été mises en évidence comme l'influence principale du type de matière organique. Le type de digestion et la gestion de pH semble également jouer un rôle mais celui-ci est moins clair que pour la matière organique. Le système créé ne permet donc pas la création d’une solution organique idéale pour la culture hydroponique. Cependant, ce travail fournit de nouvelles connaissances sur les systèmes bioponiques. D’autres recherches sont bien sûr encore à effectuer afin de pouvoir caractériser les processus et créer un système “low tech” de minéralisation de la matière organique performant. Since its revival in urban agriculture, hydroponics has shown its many advantages in terms of space, productivity, and water savings. Unfortunately, it has a major disadvantage: its dependence on mineral fertilisers. Bioponics is an innovative technique that aims to replace mineral fertilisers in hydroponic systems with organic fertilisers. Organic fertilizers, as opposed to mineral fertilizers, can be made anywhere in the world. They are therefore of direct use in developing countries.
The objective of this work is to evaluate the possibilities and effectiveness of a system for mineralising organic matter to create a nutrient solution from the excrement of goats and chickens, which are commonly found in the Democratic Republic of Congo. To achieve this objective, several parameters were studied such as organic matter (OM) concentration, type of digestion (aerobic, anaerobic), pH management and type of buffer used. The impact of these parameters on the system was analysed by studying pH, temperature, EC and NPK concentrations released in solution.
The results of this master thesis allowed the creation of a functional mineralisation system of low technicality that allows the replication of the digestion process. However, three weaknesses were also identified: the drop in temperature, the loss of organic matter and the sampling method. In addition, the mineralisation process carried out by the system is not optimal. Indeed, nitrogen nitrification did not take place during the experiments set up. Furthermore, the balance between the concentrations of nitrogen, phosphorus and potassium is not ideal for a complete nutrient solution for optimal plant growth. Indeed, the concentrations of NH4 and potassium are respectively 2 to 25 times and 5 to 15 times higher than the values found in the literature. Conversely, phosphorus concentrations are 5 to 15 times lower than the values found in the literature.
However, despite these shortcomings, several interesting conclusions have been highlighted as the main influence of the type of organic matter. The type of digestion and pH management also seems to play a role, but this is less clear than for OM. Therefore, the system created does not allow the creation of an ideal organic solution for hydroponics. However, this work does provide new knowledge about bioponic systems. Further research is of course still to be carried out to characterise the processes and create a low-tech system for the mineralisation of OM.


Book
Optimising Soilless Culture Systems and Alternative Growing Media to Current Used Materials
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book represents a Special Issue collection called: “Optimising Soilless Culture Systems and Alternative Growing Media to Current Used Materials”. Nine original papers, one review, and an Editorial from 41 authors from different countries were published in this Special Issue. New strategies and technologies, including new sustainable raw materials, should be continually developed to solve specific cultivation limitations, optimise existing systems, reduce related environmental impacts, and address the impacts of climate change.


Book
Optimising Soilless Culture Systems and Alternative Growing Media to Current Used Materials
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book represents a Special Issue collection called: “Optimising Soilless Culture Systems and Alternative Growing Media to Current Used Materials”. Nine original papers, one review, and an Editorial from 41 authors from different countries were published in this Special Issue. New strategies and technologies, including new sustainable raw materials, should be continually developed to solve specific cultivation limitations, optimise existing systems, reduce related environmental impacts, and address the impacts of climate change.

Keywords

Research & information: general --- suppressiveness --- Trichoderma harzianum --- peat --- compost --- substrate --- Vaccinium corymbosum --- container --- ammonium uptake --- southern highbush blueberry --- organic fertilizer --- hydroponic --- ribotypes --- vermicompost leachate --- Spinacia oleracea --- substrates --- soilless culture systems --- photosynthetic pigments --- phenols --- flavonoids --- ascorbic acid --- DPPH --- FRAP --- Aquaponics --- soilless cucumber --- leachate pH --- cucumber yield --- peat substitute --- growing media --- decision tree --- feasibility --- heather --- cattail --- reed --- alder --- peat reduction --- cascade hydroponics --- basil --- salinity --- amino acids --- nutrients --- root restriction --- nutrient solution --- irrigation frequency --- rootzone temperature --- oxygenation --- vapour pressure deficit --- lighting --- rootzone pH --- root exudates --- CO2 --- plant-microorganism relationships --- NH4+ --- NO3− --- nitrification --- Q10 --- modeling --- greenhouse gases --- greenhouse --- organic substrates --- carotenoids --- phenolic compounds --- carbon dioxide --- nitrous oxide --- methane --- N2O --- CH4 --- suppressiveness --- Trichoderma harzianum --- peat --- compost --- substrate --- Vaccinium corymbosum --- container --- ammonium uptake --- southern highbush blueberry --- organic fertilizer --- hydroponic --- ribotypes --- vermicompost leachate --- Spinacia oleracea --- substrates --- soilless culture systems --- photosynthetic pigments --- phenols --- flavonoids --- ascorbic acid --- DPPH --- FRAP --- Aquaponics --- soilless cucumber --- leachate pH --- cucumber yield --- peat substitute --- growing media --- decision tree --- feasibility --- heather --- cattail --- reed --- alder --- peat reduction --- cascade hydroponics --- basil --- salinity --- amino acids --- nutrients --- root restriction --- nutrient solution --- irrigation frequency --- rootzone temperature --- oxygenation --- vapour pressure deficit --- lighting --- rootzone pH --- root exudates --- CO2 --- plant-microorganism relationships --- NH4+ --- NO3− --- nitrification --- Q10 --- modeling --- greenhouse gases --- greenhouse --- organic substrates --- carotenoids --- phenolic compounds --- carbon dioxide --- nitrous oxide --- methane --- N2O --- CH4


Book
Feature Papers in Horticulturae
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Several of the 17 papers in this volume represent diverse strategies for improving sustainability in crop production systems. The maintenance of soil quality and the reclamation of marginal soils, improving tolerance to saline irrigation water, biodegradable alternatives to black plastic mulch, use of natural plant extracts against bacterial disease, and development of cultivars resistant to herbivorous arthropods address urgent priorities in sustainable systems. Two papers examine the driving forces and effects of adopting innovative agricultural technologies in food value chains in underdeveloped regions of the world, and identification of new Asian vegetable crop species for European environments and markets. Three papers reported on managing fruit set and ripening in important fruit crop species like orange, apple, and plum. Postharvest techniques to reduce disease and maintain fruit nutraceutical content were reported in separate papers. Classification techniques, conservation and utilization of unique plant species, and in vitro propagation techniques of species with potential horticultural value were described in four papers.

Keywords

Research & information: general --- Biology, life sciences --- Technology, engineering, agriculture --- grapes --- fruit quality --- SO2 --- Botrytis cinerea --- rots --- fruit drop --- sustainable systems --- fungicides --- Alternaria alternata --- value chain analysis --- innovations --- adaptive lasso --- propensity score matching --- Tanzania --- genetic resistance --- natural allelochemicals --- organic production --- plant defense --- Induced resistance --- polyphenol oxidase --- peroxidase --- plant extract --- bacterial spot --- agronomy --- sustainability --- organic fertilizer --- crop productivity --- soil acidification --- soil organic matter --- pyrolysis --- microbial activity --- health --- aging population --- consumption of fruit and vegetables --- diversification --- market trend --- Korean ginseng sprout --- Ssamchoo --- Peucedanum japonicum --- Aralia elata (Miq.) Seem --- sustainable agriculture --- marketable production --- antioxidant molecules --- mineral content --- strawberry --- weed biomass --- in vitro multiplication --- alpine strawberry --- TDZ --- BA --- IBA --- non-runnering --- shoot explant --- European plum (Prunus domestica L.) --- alternate bearing --- crop load management (CLM) --- mechanical thinning --- reducing chemical input --- circle --- ellipse --- lens --- morphology --- oval --- seed shape --- superellipse --- Cycas --- determinate growth --- dichotomous branch --- isotomous branch --- sexual dimorphism --- Zamia --- Bowenia --- Ceratozamia --- Cycadaceae --- Dioon --- Encephalartos --- leaf element composition --- leaf tissue analysis --- Lepidozamia --- Macrozamia --- Stangeria --- Zamiaceae --- Solanum lycopersicum --- Capsicum annuum --- seedlings --- vegetable nursery --- transplant production --- salinity --- abiotic stress --- plant growth regulators --- GA3 --- anthocyanin --- ascorbic acid --- drying method --- phenol --- phytochemical --- raspberry --- apple (Malus domestica Borkh.) --- colouration --- Envy, Extenday® --- Fuji --- Jazz --- light reflection --- PAL-Phenylalanine-amminia-lyase --- reflective mulch --- shading --- Citrus sinensis (L.) Osb. --- rootstocks --- maturation index --- citrus color index --- grapes --- fruit quality --- SO2 --- Botrytis cinerea --- rots --- fruit drop --- sustainable systems --- fungicides --- Alternaria alternata --- value chain analysis --- innovations --- adaptive lasso --- propensity score matching --- Tanzania --- genetic resistance --- natural allelochemicals --- organic production --- plant defense --- Induced resistance --- polyphenol oxidase --- peroxidase --- plant extract --- bacterial spot --- agronomy --- sustainability --- organic fertilizer --- crop productivity --- soil acidification --- soil organic matter --- pyrolysis --- microbial activity --- health --- aging population --- consumption of fruit and vegetables --- diversification --- market trend --- Korean ginseng sprout --- Ssamchoo --- Peucedanum japonicum --- Aralia elata (Miq.) Seem --- sustainable agriculture --- marketable production --- antioxidant molecules --- mineral content --- strawberry --- weed biomass --- in vitro multiplication --- alpine strawberry --- TDZ --- BA --- IBA --- non-runnering --- shoot explant --- European plum (Prunus domestica L.) --- alternate bearing --- crop load management (CLM) --- mechanical thinning --- reducing chemical input --- circle --- ellipse --- lens --- morphology --- oval --- seed shape --- superellipse --- Cycas --- determinate growth --- dichotomous branch --- isotomous branch --- sexual dimorphism --- Zamia --- Bowenia --- Ceratozamia --- Cycadaceae --- Dioon --- Encephalartos --- leaf element composition --- leaf tissue analysis --- Lepidozamia --- Macrozamia --- Stangeria --- Zamiaceae --- Solanum lycopersicum --- Capsicum annuum --- seedlings --- vegetable nursery --- transplant production --- salinity --- abiotic stress --- plant growth regulators --- GA3 --- anthocyanin --- ascorbic acid --- drying method --- phenol --- phytochemical --- raspberry --- apple (Malus domestica Borkh.) --- colouration --- Envy, Extenday® --- Fuji --- Jazz --- light reflection --- PAL-Phenylalanine-amminia-lyase --- reflective mulch --- shading --- Citrus sinensis (L.) Osb. --- rootstocks --- maturation index --- citrus color index


Book
Feature Papers in Horticulturae
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Several of the 17 papers in this volume represent diverse strategies for improving sustainability in crop production systems. The maintenance of soil quality and the reclamation of marginal soils, improving tolerance to saline irrigation water, biodegradable alternatives to black plastic mulch, use of natural plant extracts against bacterial disease, and development of cultivars resistant to herbivorous arthropods address urgent priorities in sustainable systems. Two papers examine the driving forces and effects of adopting innovative agricultural technologies in food value chains in underdeveloped regions of the world, and identification of new Asian vegetable crop species for European environments and markets. Three papers reported on managing fruit set and ripening in important fruit crop species like orange, apple, and plum. Postharvest techniques to reduce disease and maintain fruit nutraceutical content were reported in separate papers. Classification techniques, conservation and utilization of unique plant species, and in vitro propagation techniques of species with potential horticultural value were described in four papers.

Keywords

grapes --- fruit quality --- SO2 --- Botrytis cinerea --- rots --- fruit drop --- sustainable systems --- fungicides --- Alternaria alternata --- value chain analysis --- innovations --- adaptive lasso --- propensity score matching --- Tanzania --- genetic resistance --- natural allelochemicals --- organic production --- plant defense --- Induced resistance --- polyphenol oxidase --- peroxidase --- plant extract --- bacterial spot --- agronomy --- sustainability --- organic fertilizer --- crop productivity --- soil acidification --- soil organic matter --- pyrolysis --- microbial activity --- health --- aging population --- consumption of fruit and vegetables --- diversification --- market trend --- Korean ginseng sprout --- Ssamchoo --- Peucedanum japonicum --- Aralia elata (Miq.) Seem --- sustainable agriculture --- marketable production --- antioxidant molecules --- mineral content --- strawberry --- weed biomass --- in vitro multiplication --- alpine strawberry --- TDZ --- BA --- IBA --- non-runnering --- shoot explant --- European plum (Prunus domestica L.) --- alternate bearing --- crop load management (CLM) --- mechanical thinning --- reducing chemical input --- circle --- ellipse --- lens --- morphology --- oval --- seed shape --- superellipse --- Cycas --- determinate growth --- dichotomous branch --- isotomous branch --- sexual dimorphism --- Zamia --- Bowenia --- Ceratozamia --- Cycadaceae --- Dioon --- Encephalartos --- leaf element composition --- leaf tissue analysis --- Lepidozamia --- Macrozamia --- Stangeria --- Zamiaceae --- Solanum lycopersicum --- Capsicum annuum --- seedlings --- vegetable nursery --- transplant production --- salinity --- abiotic stress --- plant growth regulators --- GA3 --- anthocyanin --- ascorbic acid --- drying method --- phenol --- phytochemical --- raspberry --- apple (Malus domestica Borkh.) --- colouration --- Envy, Extenday® --- Fuji --- Jazz --- light reflection --- PAL—Phenylalanine-amminia-lyase --- reflective mulch --- shading --- Citrus sinensis (L.) Osb. --- rootstocks --- maturation index --- citrus color index --- n/a --- PAL-Phenylalanine-amminia-lyase


Book
Toward a Sustainable Agriculture Through Plant Biostimulants : From Experimental Data to Practical Applications
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Over the past decade, interest in plant biostimulants has been on the rise, compelled by the growing interest of researchers, extension specialists, private industries, and farmers in integrating these products in the array of environmentally friendly tools to secure improved crop performance, nutrient efficiency, product quality, and yield stability. Plant biostimulants include diverse organic and inorganic substances, natural compounds, and/or beneficial microorganisms such as humic acids, protein hydrolysates, seaweed and plant extracts, silicon, endophytic fungi like mycorrhizal fungi, and plant growth-promoting rhizobacteria belonging to the genera Azospirillum, Azotobacter, and Rhizobium. Other substances (e.g., chitosan and other biopolymers and inorganic compounds) can have biostimulant properties, but their classification within the group of biostimulants is still under consideration. Plant biostimulants are usually applied to high-value crops, mainly greenhouse crops, fruit trees and vines, open-field crops, flowers, and ornamentals to sustainably increase yield and product quality. The global biostimulant market is currently estimated at about $2.0 billion and is expected to reach $3.0 billion by 2021 at an annual growth rate of 13%. A growing interest in plant biostimulants from industries and scientists was demonstrated by the high number of published peer-reviewed articles, conferences, workshops, and symposia in the past ten years. This book compiles several original research articles, technology reports, methods, opinions, perspectives, and invited reviews and mini reviews dissecting the biostimulatory action of these natural compounds and substances and beneficial microorganisms on crops grown under optimal and suboptimal growing conditions (e.g., salinity, drought, nutrient deficiency and toxicity, heavy metal contaminations, waterlogging, and adverse soil pH conditions). Also included are contributions dealing with the effect as well as the molecular and physiological mechanisms of plant biostimulants on nutrient efficiency, product quality, and modulation of the microbial population both quantitatively and qualitatively. In addition, identification and understanding of the optimal method, time, rate of application and phenological stage for improving plant performance and resilience to stress as well as the best combinations of plant species/cultivar × environment × management practices are also reported. We strongly believe that high standard reflected in this compilation on the principles and practices of plant biostimulants will foster knowledge transfer among scientific communities, industries, and agronomists, and will enable a better understanding of the mode of action and application procedures of biostimulants in different cropping systems.

Keywords

Research & information: general --- Biology, life sciences --- Technology, engineering, agriculture --- Crocus sativus L. --- biofertilization --- arbuscular mycorrhizal fungi --- antioxidant activity --- crocin --- picrocrocin --- polyphenols --- safranal --- Maize --- biostimulant --- root --- stress --- growth --- gene expression --- stem cuttings --- propagation --- root morphology traits --- indole-3-acetic acid (IAA) --- indole-3-butyric acid (IBA) --- gibberellins --- phenolic compounds --- nutrients --- nutraceutical potential --- soybean --- yield --- N organic fertilizer --- seaweed extract --- mycorrhizal inoculants --- phosphate-solubilizing microorganisms --- biofertilizers --- microorganism consortium --- biostimulants --- Crocus sativus --- Funneliformis mosseae --- glasshouse --- protected cultivation --- Rhizophagus intraradices --- substrate --- L-methionine --- L-tryptophan --- L-glycine --- lettuce --- nitrogen --- plant biostimulant --- environmental stress --- vegetables --- fruit quality --- plants biostimulants --- yielding --- Biostimulants --- Euglena gracilis --- algal polysaccharide --- β-glucan --- water stress --- tomato --- aeroponics --- Zea mays L --- lignohumate --- lignosulfonate --- biological activity --- nitrogen metabolism --- carbon metabolism --- proteins --- phenolics --- sugars --- Ascophyllum nodosum --- Solanum melongena --- heterostyly --- pollination efficiency --- soilless conditions --- abiotic stress --- alfalfa hydrolysate --- chitosan --- zinc --- ascorbic acid --- Fragaria x ananassa --- functional quality --- lycopene --- organic farming --- protein hydrolysate --- Solanum lycopersicum L. --- tropical plant extract --- fertilizer --- melatonin --- phytomelatonin --- plant protector --- plant stress --- Lactuca sativa L. --- legume-derived protein hydrolysate --- nitrate --- Septoria --- wheat --- Paraburkholderia phytofirmans --- thyme essential oil --- isotope --- phytoparasitic nematodes --- suppressiveness --- sustainable management --- anti-nutritional substances --- fat --- fibre --- morphotype --- protein --- corn --- imaging --- industrial crops --- maize --- next generation sequencing --- phenomics --- plant phenotyping --- row crops --- Bacillus subtilis --- carotenoids --- probiotics --- PGPR --- Mentha longifolia --- humic acid --- antioxidants --- arbuscular mycorrhizal symbiosis --- mycorrhizosphere --- AMF associated bacteria --- plant growth-promoting bacteria --- phosphate-solubilizing bacteria --- siderophore production --- soil enzymatic activity --- biological index fertility --- nitrogenase activity --- microelements fertilization (Ti, Si, B, Mo, Zn) --- seed coating --- cover crop --- vermicompost --- growth enhancement --- AM fungi --- PGPB --- water deficit --- common bean --- Glomus spp. --- organic acids --- pod quality --- seaweed extracts --- seed quality --- tocopherols --- total sugars --- bean --- amino acids --- phenols --- flavonoids --- microbial biostimulant --- non-microbial biostimulant --- Lactuca sativa L. var. longifolia --- mineral profile --- physiological mechanism --- photosynthesis --- biocontrol --- plant growth promotion --- soil inoculant --- Trichoderma --- Azotobacter --- Streptomyces --- deproteinized leaf juice --- fermentation --- lactic acid bacteria --- plant nutrition --- antioxidant capacity --- ornamental plants --- N fertilization --- nitrogen use efficiency --- leaf quality --- Spinacia oleracea L. --- sustainable agriculture --- Valerianella locusta L. --- isotopic labeling --- turfgrass --- humic acids --- leaf area index (LAI) --- specific leaf area (SLA) --- Soil Plant Analysis Development (SPAD) index --- tuber yield --- ultrasound-assisted water --- foliar spray --- Pterocladia capillacea --- bio-fertilizer --- growth parameters --- Jew’s Mallow --- CROPWAT model --- eco-friendly practices --- total ascorbic acid --- Mater-Bi® --- mineral composition --- SPAD index --- Bacillus thuringiensis --- Capsicum annuum --- microbiome --- strain-specific primer --- tracking --- sweet basil --- alfalfa brown juice --- biostimulation --- chlorophyll pigments --- histological changes --- humic substances --- protein hydrolysates --- silicon --- arbuscular mycorrhiza --- plant growth promoting rhizobacteria --- macroalgae --- microalgae --- abiotic stresses --- nutrient use efficiency --- physiological mechanisms


Book
Toward a Sustainable Agriculture Through Plant Biostimulants : From Experimental Data to Practical Applications
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Over the past decade, interest in plant biostimulants has been on the rise, compelled by the growing interest of researchers, extension specialists, private industries, and farmers in integrating these products in the array of environmentally friendly tools to secure improved crop performance, nutrient efficiency, product quality, and yield stability. Plant biostimulants include diverse organic and inorganic substances, natural compounds, and/or beneficial microorganisms such as humic acids, protein hydrolysates, seaweed and plant extracts, silicon, endophytic fungi like mycorrhizal fungi, and plant growth-promoting rhizobacteria belonging to the genera Azospirillum, Azotobacter, and Rhizobium. Other substances (e.g., chitosan and other biopolymers and inorganic compounds) can have biostimulant properties, but their classification within the group of biostimulants is still under consideration. Plant biostimulants are usually applied to high-value crops, mainly greenhouse crops, fruit trees and vines, open-field crops, flowers, and ornamentals to sustainably increase yield and product quality. The global biostimulant market is currently estimated at about $2.0 billion and is expected to reach $3.0 billion by 2021 at an annual growth rate of 13%. A growing interest in plant biostimulants from industries and scientists was demonstrated by the high number of published peer-reviewed articles, conferences, workshops, and symposia in the past ten years. This book compiles several original research articles, technology reports, methods, opinions, perspectives, and invited reviews and mini reviews dissecting the biostimulatory action of these natural compounds and substances and beneficial microorganisms on crops grown under optimal and suboptimal growing conditions (e.g., salinity, drought, nutrient deficiency and toxicity, heavy metal contaminations, waterlogging, and adverse soil pH conditions). Also included are contributions dealing with the effect as well as the molecular and physiological mechanisms of plant biostimulants on nutrient efficiency, product quality, and modulation of the microbial population both quantitatively and qualitatively. In addition, identification and understanding of the optimal method, time, rate of application and phenological stage for improving plant performance and resilience to stress as well as the best combinations of plant species/cultivar × environment × management practices are also reported. We strongly believe that high standard reflected in this compilation on the principles and practices of plant biostimulants will foster knowledge transfer among scientific communities, industries, and agronomists, and will enable a better understanding of the mode of action and application procedures of biostimulants in different cropping systems.

Keywords

Crocus sativus L. --- biofertilization --- arbuscular mycorrhizal fungi --- antioxidant activity --- crocin --- picrocrocin --- polyphenols --- safranal --- Maize --- biostimulant --- root --- stress --- growth --- gene expression --- stem cuttings --- propagation --- root morphology traits --- indole-3-acetic acid (IAA) --- indole-3-butyric acid (IBA) --- gibberellins --- phenolic compounds --- nutrients --- nutraceutical potential --- soybean --- yield --- N organic fertilizer --- seaweed extract --- mycorrhizal inoculants --- phosphate-solubilizing microorganisms --- biofertilizers --- microorganism consortium --- biostimulants --- Crocus sativus --- Funneliformis mosseae --- glasshouse --- protected cultivation --- Rhizophagus intraradices --- substrate --- L-methionine --- L-tryptophan --- L-glycine --- lettuce --- nitrogen --- plant biostimulant --- environmental stress --- vegetables --- fruit quality --- plants biostimulants --- yielding --- Biostimulants --- Euglena gracilis --- algal polysaccharide --- β-glucan --- water stress --- tomato --- aeroponics --- Zea mays L --- lignohumate --- lignosulfonate --- biological activity --- nitrogen metabolism --- carbon metabolism --- proteins --- phenolics --- sugars --- Ascophyllum nodosum --- Solanum melongena --- heterostyly --- pollination efficiency --- soilless conditions --- abiotic stress --- alfalfa hydrolysate --- chitosan --- zinc --- ascorbic acid --- Fragaria x ananassa --- functional quality --- lycopene --- organic farming --- protein hydrolysate --- Solanum lycopersicum L. --- tropical plant extract --- fertilizer --- melatonin --- phytomelatonin --- plant protector --- plant stress --- Lactuca sativa L. --- legume-derived protein hydrolysate --- nitrate --- Septoria --- wheat --- Paraburkholderia phytofirmans --- thyme essential oil --- isotope --- phytoparasitic nematodes --- suppressiveness --- sustainable management --- anti-nutritional substances --- fat --- fibre --- morphotype --- protein --- corn --- imaging --- industrial crops --- maize --- next generation sequencing --- phenomics --- plant phenotyping --- row crops --- Bacillus subtilis --- carotenoids --- probiotics --- PGPR --- Mentha longifolia --- humic acid --- antioxidants --- arbuscular mycorrhizal symbiosis --- mycorrhizosphere --- AMF associated bacteria --- plant growth-promoting bacteria --- phosphate-solubilizing bacteria --- siderophore production --- soil enzymatic activity --- biological index fertility --- nitrogenase activity --- microelements fertilization (Ti, Si, B, Mo, Zn) --- seed coating --- cover crop --- vermicompost --- growth enhancement --- AM fungi --- PGPB --- water deficit --- common bean --- Glomus spp. --- organic acids --- pod quality --- seaweed extracts --- seed quality --- tocopherols --- total sugars --- bean --- amino acids --- phenols --- flavonoids --- microbial biostimulant --- non-microbial biostimulant --- Lactuca sativa L. var. longifolia --- mineral profile --- physiological mechanism --- photosynthesis --- biocontrol --- plant growth promotion --- soil inoculant --- Trichoderma --- Azotobacter --- Streptomyces --- deproteinized leaf juice --- fermentation --- lactic acid bacteria --- plant nutrition --- antioxidant capacity --- ornamental plants --- N fertilization --- nitrogen use efficiency --- leaf quality --- Spinacia oleracea L. --- sustainable agriculture --- Valerianella locusta L. --- isotopic labeling --- turfgrass --- humic acids --- leaf area index (LAI) --- specific leaf area (SLA) --- Soil Plant Analysis Development (SPAD) index --- tuber yield --- ultrasound-assisted water --- foliar spray --- Pterocladia capillacea --- bio-fertilizer --- growth parameters --- Jew’s Mallow --- CROPWAT model --- eco-friendly practices --- total ascorbic acid --- Mater-Bi® --- mineral composition --- SPAD index --- Bacillus thuringiensis --- Capsicum annuum --- microbiome --- strain-specific primer --- tracking --- sweet basil --- alfalfa brown juice --- biostimulation --- chlorophyll pigments --- histological changes --- humic substances --- protein hydrolysates --- silicon --- arbuscular mycorrhiza --- plant growth promoting rhizobacteria --- macroalgae --- microalgae --- abiotic stresses --- nutrient use efficiency --- physiological mechanisms


Book
Toward a Sustainable Agriculture Through Plant Biostimulants : From Experimental Data to Practical Applications
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Over the past decade, interest in plant biostimulants has been on the rise, compelled by the growing interest of researchers, extension specialists, private industries, and farmers in integrating these products in the array of environmentally friendly tools to secure improved crop performance, nutrient efficiency, product quality, and yield stability. Plant biostimulants include diverse organic and inorganic substances, natural compounds, and/or beneficial microorganisms such as humic acids, protein hydrolysates, seaweed and plant extracts, silicon, endophytic fungi like mycorrhizal fungi, and plant growth-promoting rhizobacteria belonging to the genera Azospirillum, Azotobacter, and Rhizobium. Other substances (e.g., chitosan and other biopolymers and inorganic compounds) can have biostimulant properties, but their classification within the group of biostimulants is still under consideration. Plant biostimulants are usually applied to high-value crops, mainly greenhouse crops, fruit trees and vines, open-field crops, flowers, and ornamentals to sustainably increase yield and product quality. The global biostimulant market is currently estimated at about $2.0 billion and is expected to reach $3.0 billion by 2021 at an annual growth rate of 13%. A growing interest in plant biostimulants from industries and scientists was demonstrated by the high number of published peer-reviewed articles, conferences, workshops, and symposia in the past ten years. This book compiles several original research articles, technology reports, methods, opinions, perspectives, and invited reviews and mini reviews dissecting the biostimulatory action of these natural compounds and substances and beneficial microorganisms on crops grown under optimal and suboptimal growing conditions (e.g., salinity, drought, nutrient deficiency and toxicity, heavy metal contaminations, waterlogging, and adverse soil pH conditions). Also included are contributions dealing with the effect as well as the molecular and physiological mechanisms of plant biostimulants on nutrient efficiency, product quality, and modulation of the microbial population both quantitatively and qualitatively. In addition, identification and understanding of the optimal method, time, rate of application and phenological stage for improving plant performance and resilience to stress as well as the best combinations of plant species/cultivar × environment × management practices are also reported. We strongly believe that high standard reflected in this compilation on the principles and practices of plant biostimulants will foster knowledge transfer among scientific communities, industries, and agronomists, and will enable a better understanding of the mode of action and application procedures of biostimulants in different cropping systems.

Keywords

Research & information: general --- Biology, life sciences --- Technology, engineering, agriculture --- Crocus sativus L. --- biofertilization --- arbuscular mycorrhizal fungi --- antioxidant activity --- crocin --- picrocrocin --- polyphenols --- safranal --- Maize --- biostimulant --- root --- stress --- growth --- gene expression --- stem cuttings --- propagation --- root morphology traits --- indole-3-acetic acid (IAA) --- indole-3-butyric acid (IBA) --- gibberellins --- phenolic compounds --- nutrients --- nutraceutical potential --- soybean --- yield --- N organic fertilizer --- seaweed extract --- mycorrhizal inoculants --- phosphate-solubilizing microorganisms --- biofertilizers --- microorganism consortium --- biostimulants --- Crocus sativus --- Funneliformis mosseae --- glasshouse --- protected cultivation --- Rhizophagus intraradices --- substrate --- L-methionine --- L-tryptophan --- L-glycine --- lettuce --- nitrogen --- plant biostimulant --- environmental stress --- vegetables --- fruit quality --- plants biostimulants --- yielding --- Biostimulants --- Euglena gracilis --- algal polysaccharide --- β-glucan --- water stress --- tomato --- aeroponics --- Zea mays L --- lignohumate --- lignosulfonate --- biological activity --- nitrogen metabolism --- carbon metabolism --- proteins --- phenolics --- sugars --- Ascophyllum nodosum --- Solanum melongena --- heterostyly --- pollination efficiency --- soilless conditions --- abiotic stress --- alfalfa hydrolysate --- chitosan --- zinc --- ascorbic acid --- Fragaria x ananassa --- functional quality --- lycopene --- organic farming --- protein hydrolysate --- Solanum lycopersicum L. --- tropical plant extract --- fertilizer --- melatonin --- phytomelatonin --- plant protector --- plant stress --- Lactuca sativa L. --- legume-derived protein hydrolysate --- nitrate --- Septoria --- wheat --- Paraburkholderia phytofirmans --- thyme essential oil --- isotope --- phytoparasitic nematodes --- suppressiveness --- sustainable management --- anti-nutritional substances --- fat --- fibre --- morphotype --- protein --- corn --- imaging --- industrial crops --- maize --- next generation sequencing --- phenomics --- plant phenotyping --- row crops --- Bacillus subtilis --- carotenoids --- probiotics --- PGPR --- Mentha longifolia --- humic acid --- antioxidants --- arbuscular mycorrhizal symbiosis --- mycorrhizosphere --- AMF associated bacteria --- plant growth-promoting bacteria --- phosphate-solubilizing bacteria --- siderophore production --- soil enzymatic activity --- biological index fertility --- nitrogenase activity --- microelements fertilization (Ti, Si, B, Mo, Zn) --- seed coating --- cover crop --- vermicompost --- growth enhancement --- AM fungi --- PGPB --- water deficit --- common bean --- Glomus spp. --- organic acids --- pod quality --- seaweed extracts --- seed quality --- tocopherols --- total sugars --- bean --- amino acids --- phenols --- flavonoids --- microbial biostimulant --- non-microbial biostimulant --- Lactuca sativa L. var. longifolia --- mineral profile --- physiological mechanism --- photosynthesis --- biocontrol --- plant growth promotion --- soil inoculant --- Trichoderma --- Azotobacter --- Streptomyces --- deproteinized leaf juice --- fermentation --- lactic acid bacteria --- plant nutrition --- antioxidant capacity --- ornamental plants --- N fertilization --- nitrogen use efficiency --- leaf quality --- Spinacia oleracea L. --- sustainable agriculture --- Valerianella locusta L. --- isotopic labeling --- turfgrass --- humic acids --- leaf area index (LAI) --- specific leaf area (SLA) --- Soil Plant Analysis Development (SPAD) index --- tuber yield --- ultrasound-assisted water --- foliar spray --- Pterocladia capillacea --- bio-fertilizer --- growth parameters --- Jew’s Mallow --- CROPWAT model --- eco-friendly practices --- total ascorbic acid --- Mater-Bi® --- mineral composition --- SPAD index --- Bacillus thuringiensis --- Capsicum annuum --- microbiome --- strain-specific primer --- tracking --- sweet basil --- alfalfa brown juice --- biostimulation --- chlorophyll pigments --- histological changes --- humic substances --- protein hydrolysates --- silicon --- arbuscular mycorrhiza --- plant growth promoting rhizobacteria --- macroalgae --- microalgae --- abiotic stresses --- nutrient use efficiency --- physiological mechanisms --- Crocus sativus L. --- biofertilization --- arbuscular mycorrhizal fungi --- antioxidant activity --- crocin --- picrocrocin --- polyphenols --- safranal --- Maize --- biostimulant --- root --- stress --- growth --- gene expression --- stem cuttings --- propagation --- root morphology traits --- indole-3-acetic acid (IAA) --- indole-3-butyric acid (IBA) --- gibberellins --- phenolic compounds --- nutrients --- nutraceutical potential --- soybean --- yield --- N organic fertilizer --- seaweed extract --- mycorrhizal inoculants --- phosphate-solubilizing microorganisms --- biofertilizers --- microorganism consortium --- biostimulants --- Crocus sativus --- Funneliformis mosseae --- glasshouse --- protected cultivation --- Rhizophagus intraradices --- substrate --- L-methionine --- L-tryptophan --- L-glycine --- lettuce --- nitrogen --- plant biostimulant --- environmental stress --- vegetables --- fruit quality --- plants biostimulants --- yielding --- Biostimulants --- Euglena gracilis --- algal polysaccharide --- β-glucan --- water stress --- tomato --- aeroponics --- Zea mays L --- lignohumate --- lignosulfonate --- biological activity --- nitrogen metabolism --- carbon metabolism --- proteins --- phenolics --- sugars --- Ascophyllum nodosum --- Solanum melongena --- heterostyly --- pollination efficiency --- soilless conditions --- abiotic stress --- alfalfa hydrolysate --- chitosan --- zinc --- ascorbic acid --- Fragaria x ananassa --- functional quality --- lycopene --- organic farming --- protein hydrolysate --- Solanum lycopersicum L. --- tropical plant extract --- fertilizer --- melatonin --- phytomelatonin --- plant protector --- plant stress --- Lactuca sativa L. --- legume-derived protein hydrolysate --- nitrate --- Septoria --- wheat --- Paraburkholderia phytofirmans --- thyme essential oil --- isotope --- phytoparasitic nematodes --- suppressiveness --- sustainable management --- anti-nutritional substances --- fat --- fibre --- morphotype --- protein --- corn --- imaging --- industrial crops --- maize --- next generation sequencing --- phenomics --- plant phenotyping --- row crops --- Bacillus subtilis --- carotenoids --- probiotics --- PGPR --- Mentha longifolia --- humic acid --- antioxidants --- arbuscular mycorrhizal symbiosis --- mycorrhizosphere --- AMF associated bacteria --- plant growth-promoting bacteria --- phosphate-solubilizing bacteria --- siderophore production --- soil enzymatic activity --- biological index fertility --- nitrogenase activity --- microelements fertilization (Ti, Si, B, Mo, Zn) --- seed coating --- cover crop --- vermicompost --- growth enhancement --- AM fungi --- PGPB --- water deficit --- common bean --- Glomus spp. --- organic acids --- pod quality --- seaweed extracts --- seed quality --- tocopherols --- total sugars --- bean --- amino acids --- phenols --- flavonoids --- microbial biostimulant --- non-microbial biostimulant --- Lactuca sativa L. var. longifolia --- mineral profile --- physiological mechanism --- photosynthesis --- biocontrol --- plant growth promotion --- soil inoculant --- Trichoderma --- Azotobacter --- Streptomyces --- deproteinized leaf juice --- fermentation --- lactic acid bacteria --- plant nutrition --- antioxidant capacity --- ornamental plants --- N fertilization --- nitrogen use efficiency --- leaf quality --- Spinacia oleracea L. --- sustainable agriculture --- Valerianella locusta L. --- isotopic labeling --- turfgrass --- humic acids --- leaf area index (LAI) --- specific leaf area (SLA) --- Soil Plant Analysis Development (SPAD) index --- tuber yield --- ultrasound-assisted water --- foliar spray --- Pterocladia capillacea --- bio-fertilizer --- growth parameters --- Jew’s Mallow --- CROPWAT model --- eco-friendly practices --- total ascorbic acid --- Mater-Bi® --- mineral composition --- SPAD index --- Bacillus thuringiensis --- Capsicum annuum --- microbiome --- strain-specific primer --- tracking --- sweet basil --- alfalfa brown juice --- biostimulation --- chlorophyll pigments --- histological changes --- humic substances --- protein hydrolysates --- silicon --- arbuscular mycorrhiza --- plant growth promoting rhizobacteria --- macroalgae --- microalgae --- abiotic stresses --- nutrient use efficiency --- physiological mechanisms

Listing 1 - 8 of 8
Sort by