Listing 1 - 3 of 3 |
Sort by
|
Choose an application
The book is devoted to the design, application and characterization of thin films and structures, with special emphasis on optical applications. It comprises ten papers—five featured and five regular—authored by scientists all over the world. Diverse materials are studied and their possible applications are demonstrated and discussed—transparent conductive coatings and structures from ZnO doped with Al and Ga and Ti-doped SnO2, polymers and nanosized zeolite thin films for optical sensing, TiO2 with linear and nonlinear optical properties, organic diamagnetic materials, broadband optical coatings, CrWN glass molding coatings, and silicon on insulator waveguides.
faraday rotation --- thin films --- magneto-optics --- organic material --- tolane derivatives --- optical coatings --- monitoring --- deposition --- titanium dioxide --- optical constants --- two-photon absorption --- nonlinear refraction --- scattering --- laser-induced deflection --- absorption measurement --- CrWN coatings --- microstructure evolution --- spinodal decomposition --- thermal stability --- hardness --- plasma enhanced magnetron sputtering --- sidewall roughness --- optical scattering loss --- silicon-on-insulator waveguide --- multilayer --- ZnO --- Ag --- TCO --- transmittance --- structure --- resistance --- SnO2 --- Ti-doped --- annealing temperature --- electrical resistivity --- optical sensors --- optical materials --- zeolites --- ellipsometry --- single wavelength ellipsometry --- spectroscopic ellipsometry --- poly(vinyl alcohol) copolymers --- humidity sensing --- Al-doped ZnO --- ALD technique --- transparent conductive layers --- LC display --- flexible PDLC devices --- transparent conductive coatings --- optical sensing --- broadband design --- linear and non-linear optical properties --- organic diamagnetic materials
Choose an application
The book is devoted to the design, application and characterization of thin films and structures, with special emphasis on optical applications. It comprises ten papers—five featured and five regular—authored by scientists all over the world. Diverse materials are studied and their possible applications are demonstrated and discussed—transparent conductive coatings and structures from ZnO doped with Al and Ga and Ti-doped SnO2, polymers and nanosized zeolite thin films for optical sensing, TiO2 with linear and nonlinear optical properties, organic diamagnetic materials, broadband optical coatings, CrWN glass molding coatings, and silicon on insulator waveguides.
Research & information: general --- Technology: general issues --- faraday rotation --- thin films --- magneto-optics --- organic material --- tolane derivatives --- optical coatings --- monitoring --- deposition --- titanium dioxide --- optical constants --- two-photon absorption --- nonlinear refraction --- scattering --- laser-induced deflection --- absorption measurement --- CrWN coatings --- microstructure evolution --- spinodal decomposition --- thermal stability --- hardness --- plasma enhanced magnetron sputtering --- sidewall roughness --- optical scattering loss --- silicon-on-insulator waveguide --- multilayer --- ZnO --- Ag --- TCO --- transmittance --- structure --- resistance --- SnO2 --- Ti-doped --- annealing temperature --- electrical resistivity --- optical sensors --- optical materials --- zeolites --- ellipsometry --- single wavelength ellipsometry --- spectroscopic ellipsometry --- poly(vinyl alcohol) copolymers --- humidity sensing --- Al-doped ZnO --- ALD technique --- transparent conductive layers --- LC display --- flexible PDLC devices --- transparent conductive coatings --- optical sensing --- broadband design --- linear and non-linear optical properties --- organic diamagnetic materials --- faraday rotation --- thin films --- magneto-optics --- organic material --- tolane derivatives --- optical coatings --- monitoring --- deposition --- titanium dioxide --- optical constants --- two-photon absorption --- nonlinear refraction --- scattering --- laser-induced deflection --- absorption measurement --- CrWN coatings --- microstructure evolution --- spinodal decomposition --- thermal stability --- hardness --- plasma enhanced magnetron sputtering --- sidewall roughness --- optical scattering loss --- silicon-on-insulator waveguide --- multilayer --- ZnO --- Ag --- TCO --- transmittance --- structure --- resistance --- SnO2 --- Ti-doped --- annealing temperature --- electrical resistivity --- optical sensors --- optical materials --- zeolites --- ellipsometry --- single wavelength ellipsometry --- spectroscopic ellipsometry --- poly(vinyl alcohol) copolymers --- humidity sensing --- Al-doped ZnO --- ALD technique --- transparent conductive layers --- LC display --- flexible PDLC devices --- transparent conductive coatings --- optical sensing --- broadband design --- linear and non-linear optical properties --- organic diamagnetic materials
Choose an application
The book is devoted to the design, application and characterization of thin films and structures, with special emphasis on optical applications. It comprises ten papers—five featured and five regular—authored by scientists all over the world. Diverse materials are studied and their possible applications are demonstrated and discussed—transparent conductive coatings and structures from ZnO doped with Al and Ga and Ti-doped SnO2, polymers and nanosized zeolite thin films for optical sensing, TiO2 with linear and nonlinear optical properties, organic diamagnetic materials, broadband optical coatings, CrWN glass molding coatings, and silicon on insulator waveguides.
Research & information: general --- Technology: general issues --- faraday rotation --- thin films --- magneto-optics --- organic material --- tolane derivatives --- optical coatings --- monitoring --- deposition --- titanium dioxide --- optical constants --- two-photon absorption --- nonlinear refraction --- scattering --- laser-induced deflection --- absorption measurement --- CrWN coatings --- microstructure evolution --- spinodal decomposition --- thermal stability --- hardness --- plasma enhanced magnetron sputtering --- sidewall roughness --- optical scattering loss --- silicon-on-insulator waveguide --- multilayer --- ZnO --- Ag --- TCO --- transmittance --- structure --- resistance --- SnO2 --- Ti-doped --- annealing temperature --- electrical resistivity --- optical sensors --- optical materials --- zeolites --- ellipsometry --- single wavelength ellipsometry --- spectroscopic ellipsometry --- poly(vinyl alcohol) copolymers --- humidity sensing --- Al-doped ZnO --- ALD technique --- transparent conductive layers --- LC display --- flexible PDLC devices --- transparent conductive coatings --- optical sensing --- broadband design --- linear and non-linear optical properties --- organic diamagnetic materials
Listing 1 - 3 of 3 |
Sort by
|