Listing 1 - 5 of 5 |
Sort by
|
Choose an application
Throughout the history of materials science and physics, few topics have captured as much interest as the phenomenon of superconductivity (SPC), discovered in 1911. Perhaps this is because of the intriguing interpretation of the phenomenon, which remains controversial, or for the secret hope of being able to synthesize a material with a critical superconductive transition temperature (TC) high enough to revolutionize the sector of energy generation and transport. As a matter of fact, the search for new superconductor materials has motivated an army of scientists, in particular, after the discovery of high-TC superconductor cuprates (HTS) in the mid-80s. Besides the unremitting interest in HTS, new materials, such as intermetallic borides, iron–nickel-based superconductors, heavy fermion, and organic and superhydride systems, are still delivering outstanding achievements to the scientific community, among which includes thousands of papers and a handful of Nobel prize winners). This Special Issue “Synthesis and Characterization of New Superconductor Materials” is a collection of scientific contributions providing new insights and advances in this fascinating field, addressing issues ranging from the fundamental research (theory and correlation between critical temperature, TC, and structural properties) to the development of innovative solutions for practical applications of superconductivity: Synthesis of new superconducting materials Magnetic and/or electric characterization of the TC transition Role of crystal symmetry and chemical substitutions on TC TC dependence on external stimuli and/or non-ambient conditions Theoretical modeling
Research & information: general --- Dirac electron --- Landau level --- interlayer magnetoresistance --- organic conductor --- α-(BEDT-TTF)2I3 --- Er123 --- melt temperature --- superconducting solder --- superconducting joint --- FeSe --- superconductivity --- high pressure --- chemical intercalation --- interfacial coupling --- AC susceptibility --- BaZrO3 --- co-precipitation --- solid-state --- YBa2Cu3O7−δ --- Weyl semimetal --- focused ion beam --- high-temperature superconductors --- bismuth-based cuprates --- Bi-2212 --- Dirac electron --- Landau level --- interlayer magnetoresistance --- organic conductor --- α-(BEDT-TTF)2I3 --- Er123 --- melt temperature --- superconducting solder --- superconducting joint --- FeSe --- superconductivity --- high pressure --- chemical intercalation --- interfacial coupling --- AC susceptibility --- BaZrO3 --- co-precipitation --- solid-state --- YBa2Cu3O7−δ --- Weyl semimetal --- focused ion beam --- high-temperature superconductors --- bismuth-based cuprates --- Bi-2212
Choose an application
Throughout the history of materials science and physics, few topics have captured as much interest as the phenomenon of superconductivity (SPC), discovered in 1911. Perhaps this is because of the intriguing interpretation of the phenomenon, which remains controversial, or for the secret hope of being able to synthesize a material with a critical superconductive transition temperature (TC) high enough to revolutionize the sector of energy generation and transport. As a matter of fact, the search for new superconductor materials has motivated an army of scientists, in particular, after the discovery of high-TC superconductor cuprates (HTS) in the mid-80s. Besides the unremitting interest in HTS, new materials, such as intermetallic borides, iron–nickel-based superconductors, heavy fermion, and organic and superhydride systems, are still delivering outstanding achievements to the scientific community, among which includes thousands of papers and a handful of Nobel prize winners). This Special Issue “Synthesis and Characterization of New Superconductor Materials” is a collection of scientific contributions providing new insights and advances in this fascinating field, addressing issues ranging from the fundamental research (theory and correlation between critical temperature, TC, and structural properties) to the development of innovative solutions for practical applications of superconductivity: Synthesis of new superconducting materials Magnetic and/or electric characterization of the TC transition Role of crystal symmetry and chemical substitutions on TC TC dependence on external stimuli and/or non-ambient conditions Theoretical modeling
Dirac electron --- Landau level --- interlayer magnetoresistance --- organic conductor --- α-(BEDT-TTF)2I3 --- Er123 --- melt temperature --- superconducting solder --- superconducting joint --- FeSe --- superconductivity --- high pressure --- chemical intercalation --- interfacial coupling --- AC susceptibility --- BaZrO3 --- co-precipitation --- solid-state --- YBa2Cu3O7−δ --- Weyl semimetal --- focused ion beam --- high-temperature superconductors --- bismuth-based cuprates --- Bi-2212 --- n/a
Choose an application
This collection of articles focuses on different aspects of the study of organic conductors. Recent progress in both theoretical and experimental studies is covered in this Special Issue. Papers on a wide variety of studies are categorized into representative topics of chemistry and physics. Besides classical studies on the crystalline organic conductors, applied studies on semiconducting thin films and a number of new topics shared with inorganic materials are also discussed.
Technology: general issues --- Chemical engineering --- organic π-radical --- molecular conductor --- phthalocyanine --- three-dimensional network --- three-dimensional electronic system --- organic conductors --- bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) --- bis(ethylenediseleno)tetrathiafulvalene (BEST) --- bis(ethylenedithio)tetraselenafulvalene (BETS) --- electrical resistivity --- magnetic susceptibility --- X-ray analysis --- charge-ordered state --- quantum chemical calculations --- Madelung energy --- magnetic property --- reversible transformation --- spin ladder --- nodal line semimetal --- single-component molecular conductor --- conductivity --- DOS --- tight-binding model --- interacting electrons in one dimension --- electronic and lattice instabilities --- renormalization group method --- X-ray diffraction --- single crystal --- electron density --- molecular orbital --- single-component molecular conductors --- extended-TTF dithiolate ligands --- gold dithiolate complexes --- (BETS)2Fe1−xGaxCl4 --- π-d interaction --- NMR --- charge glass --- heat capacity --- electric current --- electric voltage --- Boson peak --- chirality --- tetrathiafulvalene --- crystal structures --- band structure calculations --- hydrogen bonding --- charge-transfer salts --- (TMTTF)2X --- deuteration --- anions --- charge transport --- tunnel junction --- MOCVD --- quantum well --- co-doping --- solar cells --- (TMTSF)8(I3)5 --- (TMTSF)5(I3)2 --- (TMTSF)4(I3)4·THF --- organic conductor --- crystal structure --- high pressure --- DFT --- MP2 --- organic superconductors --- Beechgard salts --- Maxwell-Garnett approximation --- high-Tc --- pressure effect --- Dirac electron system --- resistivity --- magnetoresistance --- synchrotron X-ray diffraction --- band calculation --- correlated electron materials --- layered organic conductor --- unconventional superconductivity --- vortex dynamics --- d-wave pairing symmetry --- superconducting gap structure --- magnetic field --- flux-flow resistivity --- charge-ordered insulator --- electric double layer transistor --- organic field-effect transistor --- π-d system --- Mott insulator --- strongly correlated electron system --- multiferroic --- dielectric --- photoconductor --- organic semiconductors --- molecular orbitals --- pyroelectricity --- temperature modulation --- molecular ferroelectrics --- radiative temperature control --- thermal diffusion model --- lithium niobate --- first-principles calculation --- density-functional theory --- charge ordering --- hybrid functional --- electronic structure --- nickel-dithiolene complex --- cycloalkane substituent --- crystalline organic charge-transfer complexes --- disordered systems --- overlap integrals --- extended Hückel approximation --- Dirac electrons --- zero-gap semiconductors --- merging of Dirac cones --- organic π-radical --- molecular conductor --- phthalocyanine --- three-dimensional network --- three-dimensional electronic system --- organic conductors --- bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) --- bis(ethylenediseleno)tetrathiafulvalene (BEST) --- bis(ethylenedithio)tetraselenafulvalene (BETS) --- electrical resistivity --- magnetic susceptibility --- X-ray analysis --- charge-ordered state --- quantum chemical calculations --- Madelung energy --- magnetic property --- reversible transformation --- spin ladder --- nodal line semimetal --- single-component molecular conductor --- conductivity --- DOS --- tight-binding model --- interacting electrons in one dimension --- electronic and lattice instabilities --- renormalization group method --- X-ray diffraction --- single crystal --- electron density --- molecular orbital --- single-component molecular conductors --- extended-TTF dithiolate ligands --- gold dithiolate complexes --- (BETS)2Fe1−xGaxCl4 --- π-d interaction --- NMR --- charge glass --- heat capacity --- electric current --- electric voltage --- Boson peak --- chirality --- tetrathiafulvalene --- crystal structures --- band structure calculations --- hydrogen bonding --- charge-transfer salts --- (TMTTF)2X --- deuteration --- anions --- charge transport --- tunnel junction --- MOCVD --- quantum well --- co-doping --- solar cells --- (TMTSF)8(I3)5 --- (TMTSF)5(I3)2 --- (TMTSF)4(I3)4·THF --- organic conductor --- crystal structure --- high pressure --- DFT --- MP2 --- organic superconductors --- Beechgard salts --- Maxwell-Garnett approximation --- high-Tc --- pressure effect --- Dirac electron system --- resistivity --- magnetoresistance --- synchrotron X-ray diffraction --- band calculation --- correlated electron materials --- layered organic conductor --- unconventional superconductivity --- vortex dynamics --- d-wave pairing symmetry --- superconducting gap structure --- magnetic field --- flux-flow resistivity --- charge-ordered insulator --- electric double layer transistor --- organic field-effect transistor --- π-d system --- Mott insulator --- strongly correlated electron system --- multiferroic --- dielectric --- photoconductor --- organic semiconductors --- molecular orbitals --- pyroelectricity --- temperature modulation --- molecular ferroelectrics --- radiative temperature control --- thermal diffusion model --- lithium niobate --- first-principles calculation --- density-functional theory --- charge ordering --- hybrid functional --- electronic structure --- nickel-dithiolene complex --- cycloalkane substituent --- crystalline organic charge-transfer complexes --- disordered systems --- overlap integrals --- extended Hückel approximation --- Dirac electrons --- zero-gap semiconductors --- merging of Dirac cones
Choose an application
This collection of articles focuses on different aspects of the study of organic conductors. Recent progress in both theoretical and experimental studies is covered in this Special Issue. Papers on a wide variety of studies are categorized into representative topics of chemistry and physics. Besides classical studies on the crystalline organic conductors, applied studies on semiconducting thin films and a number of new topics shared with inorganic materials are also discussed.
Technology: general issues --- Chemical engineering --- organic π-radical --- molecular conductor --- phthalocyanine --- three-dimensional network --- three-dimensional electronic system --- organic conductors --- bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) --- bis(ethylenediseleno)tetrathiafulvalene (BEST) --- bis(ethylenedithio)tetraselenafulvalene (BETS) --- electrical resistivity --- magnetic susceptibility --- X-ray analysis --- charge-ordered state --- quantum chemical calculations --- Madelung energy --- magnetic property --- reversible transformation --- spin ladder --- nodal line semimetal --- single-component molecular conductor --- conductivity --- DOS --- tight-binding model --- interacting electrons in one dimension --- electronic and lattice instabilities --- renormalization group method --- X-ray diffraction --- single crystal --- electron density --- molecular orbital --- single-component molecular conductors --- extended-TTF dithiolate ligands --- gold dithiolate complexes --- (BETS)2Fe1−xGaxCl4 --- π-d interaction --- NMR --- charge glass --- heat capacity --- electric current --- electric voltage --- Boson peak --- chirality --- tetrathiafulvalene --- crystal structures --- band structure calculations --- hydrogen bonding --- charge-transfer salts --- (TMTTF)2X --- deuteration --- anions --- charge transport --- tunnel junction --- MOCVD --- quantum well --- co-doping --- solar cells --- (TMTSF)8(I3)5 --- (TMTSF)5(I3)2 --- (TMTSF)4(I3)4·THF --- organic conductor --- crystal structure --- high pressure --- DFT --- MP2 --- organic superconductors --- Beechgard salts --- Maxwell-Garnett approximation --- high-Tc --- pressure effect --- Dirac electron system --- resistivity --- magnetoresistance --- synchrotron X-ray diffraction --- band calculation --- correlated electron materials --- layered organic conductor --- unconventional superconductivity --- vortex dynamics --- d-wave pairing symmetry --- superconducting gap structure --- magnetic field --- flux-flow resistivity --- charge-ordered insulator --- electric double layer transistor --- organic field-effect transistor --- π–d system --- Mott insulator --- strongly correlated electron system --- multiferroic --- dielectric --- photoconductor --- organic semiconductors --- molecular orbitals --- pyroelectricity --- temperature modulation --- molecular ferroelectrics --- radiative temperature control --- thermal diffusion model --- lithium niobate --- first-principles calculation --- density-functional theory --- charge ordering --- hybrid functional --- electronic structure --- nickel–dithiolene complex --- cycloalkane substituent --- crystalline organic charge-transfer complexes --- disordered systems --- overlap integrals --- extended Hückel approximation --- Dirac electrons --- zero-gap semiconductors --- merging of Dirac cones --- n/a --- π-d system --- nickel-dithiolene complex --- extended Hückel approximation
Choose an application
This collection of articles focuses on different aspects of the study of organic conductors. Recent progress in both theoretical and experimental studies is covered in this Special Issue. Papers on a wide variety of studies are categorized into representative topics of chemistry and physics. Besides classical studies on the crystalline organic conductors, applied studies on semiconducting thin films and a number of new topics shared with inorganic materials are also discussed.
organic π-radical --- molecular conductor --- phthalocyanine --- three-dimensional network --- three-dimensional electronic system --- organic conductors --- bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) --- bis(ethylenediseleno)tetrathiafulvalene (BEST) --- bis(ethylenedithio)tetraselenafulvalene (BETS) --- electrical resistivity --- magnetic susceptibility --- X-ray analysis --- charge-ordered state --- quantum chemical calculations --- Madelung energy --- magnetic property --- reversible transformation --- spin ladder --- nodal line semimetal --- single-component molecular conductor --- conductivity --- DOS --- tight-binding model --- interacting electrons in one dimension --- electronic and lattice instabilities --- renormalization group method --- X-ray diffraction --- single crystal --- electron density --- molecular orbital --- single-component molecular conductors --- extended-TTF dithiolate ligands --- gold dithiolate complexes --- (BETS)2Fe1−xGaxCl4 --- π-d interaction --- NMR --- charge glass --- heat capacity --- electric current --- electric voltage --- Boson peak --- chirality --- tetrathiafulvalene --- crystal structures --- band structure calculations --- hydrogen bonding --- charge-transfer salts --- (TMTTF)2X --- deuteration --- anions --- charge transport --- tunnel junction --- MOCVD --- quantum well --- co-doping --- solar cells --- (TMTSF)8(I3)5 --- (TMTSF)5(I3)2 --- (TMTSF)4(I3)4·THF --- organic conductor --- crystal structure --- high pressure --- DFT --- MP2 --- organic superconductors --- Beechgard salts --- Maxwell-Garnett approximation --- high-Tc --- pressure effect --- Dirac electron system --- resistivity --- magnetoresistance --- synchrotron X-ray diffraction --- band calculation --- correlated electron materials --- layered organic conductor --- unconventional superconductivity --- vortex dynamics --- d-wave pairing symmetry --- superconducting gap structure --- magnetic field --- flux-flow resistivity --- charge-ordered insulator --- electric double layer transistor --- organic field-effect transistor --- π–d system --- Mott insulator --- strongly correlated electron system --- multiferroic --- dielectric --- photoconductor --- organic semiconductors --- molecular orbitals --- pyroelectricity --- temperature modulation --- molecular ferroelectrics --- radiative temperature control --- thermal diffusion model --- lithium niobate --- first-principles calculation --- density-functional theory --- charge ordering --- hybrid functional --- electronic structure --- nickel–dithiolene complex --- cycloalkane substituent --- crystalline organic charge-transfer complexes --- disordered systems --- overlap integrals --- extended Hückel approximation --- Dirac electrons --- zero-gap semiconductors --- merging of Dirac cones --- n/a --- π-d system --- nickel-dithiolene complex --- extended Hückel approximation
Listing 1 - 5 of 5 |
Sort by
|