Narrow your search

Library

FARO (4)

KU Leuven (4)

LUCA School of Arts (4)

Odisee (4)

Thomas More Kempen (4)

Thomas More Mechelen (4)

UCLL (4)

ULiège (4)

VIVES (4)

Vlaams Parlement (4)

More...

Resource type

book (7)


Language

English (7)


Year
From To Submit

2022 (2)

2021 (5)

Listing 1 - 7 of 7
Sort by

Book
Monitoring and Assessment of Environmental Quality in Coastal Ecosystems
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Coastal ecosystems are dynamic, complex, and often fragile transition environments between land and oceans. They are exclusive habitats for a broad range of living organisms, functioning as havens for biodiversity and providing several important ecological services that link terrestrial, freshwater, and marine environments. Humans living in coastal zones have been strongly dependent on these ecosystems as a source of food, physical protection against storms and advancing sea, and a range of human activities that generate economic income. Notwithstanding, the intensification of human activities in coastal areas of the recent decades, as well as the global climatic changes and coastal erosion processes of the present, have had detrimental impacts on these environments. Maintaining the structural and functional integrity of these environments and recovering an ecological balance or mitigating disturbances in systems under the influence of such stressors are complex tasks, only possible through the implementation of monitoring programs and by assessing their environmental quality. In this book, distinct approaches to environmental quality monitoring and assessment of coastal environments are presented, focused on abiotic and biotic compartments, and using tools that range from ecological levels of organization to the sub-organismal and the ecosystem levels.


Book
Monitoring and Assessment of Environmental Quality in Coastal Ecosystems
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Coastal ecosystems are dynamic, complex, and often fragile transition environments between land and oceans. They are exclusive habitats for a broad range of living organisms, functioning as havens for biodiversity and providing several important ecological services that link terrestrial, freshwater, and marine environments. Humans living in coastal zones have been strongly dependent on these ecosystems as a source of food, physical protection against storms and advancing sea, and a range of human activities that generate economic income. Notwithstanding, the intensification of human activities in coastal areas of the recent decades, as well as the global climatic changes and coastal erosion processes of the present, have had detrimental impacts on these environments. Maintaining the structural and functional integrity of these environments and recovering an ecological balance or mitigating disturbances in systems under the influence of such stressors are complex tasks, only possible through the implementation of monitoring programs and by assessing their environmental quality. In this book, distinct approaches to environmental quality monitoring and assessment of coastal environments are presented, focused on abiotic and biotic compartments, and using tools that range from ecological levels of organization to the sub-organismal and the ecosystem levels.


Book
Applications of Remote Sensing Data in Mapping of Forest Growing Stock and Biomass
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue (SI), entitled "Applications of Remote Sensing Data in Mapping of Forest Growing Stock and Biomass”, resulted from 13 peer-reviewed papers dedicated to Forestry and Biomass mapping, characterization and accounting. The papers' authors presented improvements in Remote Sensing processing techniques on satellite images, drone-acquired images and LiDAR images, both aerial and terrestrial. Regarding the images’ classification models, all authors presented supervised methods, such as Random Forest, complemented by GIS routines and biophysical variables measured on the field, which were properly georeferenced. The achieved results enable the statement that remote imagery could be successfully used as a data source for regression analysis and formulation and, in this way, used in forestry actions such as canopy structure analysis and mapping, or to estimate biomass. This collection of papers, presented in the form of a book, brings together 13 articles covering various forest issues and issues in forest biomass calculation, constituting an important work manual for those who use mixed GIS and RS techniques.


Book
Applications of Remote Sensing Data in Mapping of Forest Growing Stock and Biomass
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue (SI), entitled "Applications of Remote Sensing Data in Mapping of Forest Growing Stock and Biomass”, resulted from 13 peer-reviewed papers dedicated to Forestry and Biomass mapping, characterization and accounting. The papers' authors presented improvements in Remote Sensing processing techniques on satellite images, drone-acquired images and LiDAR images, both aerial and terrestrial. Regarding the images’ classification models, all authors presented supervised methods, such as Random Forest, complemented by GIS routines and biophysical variables measured on the field, which were properly georeferenced. The achieved results enable the statement that remote imagery could be successfully used as a data source for regression analysis and formulation and, in this way, used in forestry actions such as canopy structure analysis and mapping, or to estimate biomass. This collection of papers, presented in the form of a book, brings together 13 articles covering various forest issues and issues in forest biomass calculation, constituting an important work manual for those who use mixed GIS and RS techniques.


Book
Applications of Remote Sensing Data in Mapping of Forest Growing Stock and Biomass
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue (SI), entitled "Applications of Remote Sensing Data in Mapping of Forest Growing Stock and Biomass”, resulted from 13 peer-reviewed papers dedicated to Forestry and Biomass mapping, characterization and accounting. The papers' authors presented improvements in Remote Sensing processing techniques on satellite images, drone-acquired images and LiDAR images, both aerial and terrestrial. Regarding the images’ classification models, all authors presented supervised methods, such as Random Forest, complemented by GIS routines and biophysical variables measured on the field, which were properly georeferenced. The achieved results enable the statement that remote imagery could be successfully used as a data source for regression analysis and formulation and, in this way, used in forestry actions such as canopy structure analysis and mapping, or to estimate biomass. This collection of papers, presented in the form of a book, brings together 13 articles covering various forest issues and issues in forest biomass calculation, constituting an important work manual for those who use mixed GIS and RS techniques.


Book
Sustainable Agriculture and Advances of Remote Sensing (Volume 1)
Authors: --- --- ---
ISBN: 303655338X 3036553371 Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Agriculture, as the main source of alimentation and the most important economic activity globally, is being affected by the impacts of climate change. To maintain and increase our global food system production, to reduce biodiversity loss and preserve our natural ecosystem, new practices and technologies are required. This book focuses on the latest advances in remote sensing technology and agricultural engineering leading to the sustainable agriculture practices. Earth observation data, in situ and proxy-remote sensing data are the main source of information for monitoring and analyzing agriculture activities. Particular attention is given to earth observation satellites and the Internet of Things for data collection, to multispectral and hyperspectral data analysis using machine learning and deep learning, to WebGIS and the Internet of Things for sharing and publishing the results, among others.

Keywords

Research & information: general --- Geography --- geographic information system (GIS) --- pocket beaches --- coastal management --- Interreg --- climate change --- remote sensing --- drone --- Sicily --- Malta --- Gozo --- Comino --- systematic literature review --- anomaly intrusion detection --- deep learning --- IoT --- resource constraint --- IDS --- evapotranspiration --- penman-monteith equation --- artificial neural network --- canopy conductance --- Ziz basin --- water quality --- satellite image analysis --- modeling approach --- nitrate --- dissolved oxygen --- chlorophyll a --- time series analysis --- environmental monitoring --- water extraction --- modified normalized difference water index (MNDWI) --- machine learning algorithm --- hyperspectral --- proximal sensing --- panicle initiation --- normalized difference vegetation index (NDVI) --- green ring --- internode-elongation --- Sentinel 1 and 2 --- Copernicus Sentinels --- crop classification --- food security --- agricultural monitoring --- data analysis --- SAR --- random forest --- 3D bale wrapping method --- equal bale dimensions --- mathematical model --- minimal film consumption --- optimal bale dimensions --- round bales --- Sentinel-2 --- SVM --- RF --- Boufakrane River watershed --- irrigation requirements --- water resources --- sustainable land use --- agriculture --- invasive plants --- precision agriculture --- rice farming --- site-specific weed management --- nitrogen prediction --- 1D convolution neural networks --- cucumber --- crop yield improvement --- mango leaf --- CCA --- vein pattern --- leaf disease --- cubic SVM --- chlorophyll-a concentration --- transfer learning --- overfitting --- data augmentation --- guava disease --- plant disease detection --- crops diseases --- entropy --- features fusion --- machine learning --- object-based classification --- density estimation --- histogram --- land use --- crop fields --- soil tillage --- data fusion --- multispectral --- sensor --- probe --- temperature profile --- forest roads --- simulation --- autonomous robots --- smart agriculture --- environmental protection --- photogrammetry --- path planning --- internet of things --- modeling --- convolutional neural networks --- machine vision --- computer vision --- modular robot --- selective spraying --- vision-based crop and weed detection --- Faster R-CNN --- YOLOv5 --- band selection --- CNN --- NDVI --- hyperspectral imaging --- crops --- urban flood --- Sentinel-1a --- Synthetic Aperture Radar (SAR) --- 3D Convolutional Neural Network --- multi-temporal data --- land use classification --- GIS --- Coatzacoalcos --- algorithms --- clustering --- pest control --- site-specific --- virtual pests --- rice plant --- weed --- hyperspectral imagery --- sustainable agriculture --- green technologies --- Internet of Things --- natural resources --- sustainable environment --- IoT ecosystem --- hyperspectral remoting sensing --- crop mapping --- image classification --- deep transfer learning --- hyperparameter optimization --- metaheuristic --- soil attribute --- ordinary Kriging --- rational sampling numbers --- spatial heterogeneity --- sampling --- soil pH --- spatial variation --- ordinary kriging --- Land Use/Land Cover --- LISS-III --- Landsat --- Vision Transformer --- Bidirectional long-short term memory --- Google Earth Engine --- Explainable Artificial Intelligence


Book
Sustainable Agriculture and Advances of Remote Sensing (Volume 2)
Authors: --- --- ---
ISBN: 3036553363 3036553355 Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Agriculture, as the main source of alimentation and the most important economic activity globally, is being affected by the impacts of climate change. To maintain and increase our global food system production, to reduce biodiversity loss and preserve our natural ecosystem, new practices and technologies are required. This book focuses on the latest advances in remote sensing technology and agricultural engineering leading to the sustainable agriculture practices. Earth observation data, in situ and proxy-remote sensing data are the main source of information for monitoring and analyzing agriculture activities. Particular attention is given to earth observation satellites and the Internet of Things for data collection, to multispectral and hyperspectral data analysis using machine learning and deep learning, to WebGIS and the Internet of Things for sharing and publication of the results, among others.

Keywords

Research & information: general --- Geography --- geographic information system (GIS) --- pocket beaches --- coastal management --- Interreg --- climate change --- remote sensing --- drone --- Sicily --- Malta --- Gozo --- Comino --- systematic literature review --- anomaly intrusion detection --- deep learning --- IoT --- resource constraint --- IDS --- evapotranspiration --- penman-monteith equation --- artificial neural network --- canopy conductance --- Ziz basin --- water quality --- satellite image analysis --- modeling approach --- nitrate --- dissolved oxygen --- chlorophyll a --- time series analysis --- environmental monitoring --- water extraction --- modified normalized difference water index (MNDWI) --- machine learning algorithm --- hyperspectral --- proximal sensing --- panicle initiation --- normalized difference vegetation index (NDVI) --- green ring --- internode-elongation --- Sentinel 1 and 2 --- Copernicus Sentinels --- crop classification --- food security --- agricultural monitoring --- data analysis --- SAR --- random forest --- 3D bale wrapping method --- equal bale dimensions --- mathematical model --- minimal film consumption --- optimal bale dimensions --- round bales --- Sentinel-2 --- SVM --- RF --- Boufakrane River watershed --- irrigation requirements --- water resources --- sustainable land use --- agriculture --- invasive plants --- precision agriculture --- rice farming --- site-specific weed management --- nitrogen prediction --- 1D convolution neural networks --- cucumber --- crop yield improvement --- mango leaf --- CCA --- vein pattern --- leaf disease --- cubic SVM --- chlorophyll-a concentration --- transfer learning --- overfitting --- data augmentation --- guava disease --- plant disease detection --- crops diseases --- entropy --- features fusion --- machine learning --- object-based classification --- density estimation --- histogram --- land use --- crop fields --- soil tillage --- data fusion --- multispectral --- sensor --- probe --- temperature profile --- forest roads --- simulation --- autonomous robots --- smart agriculture --- environmental protection --- photogrammetry --- path planning --- internet of things --- modeling --- convolutional neural networks --- machine vision --- computer vision --- modular robot --- selective spraying --- vision-based crop and weed detection --- Faster R-CNN --- YOLOv5 --- band selection --- CNN --- NDVI --- hyperspectral imaging --- crops --- urban flood --- Sentinel-1a --- Synthetic Aperture Radar (SAR) --- 3D Convolutional Neural Network --- multi-temporal data --- land use classification --- GIS --- Coatzacoalcos --- algorithms --- clustering --- pest control --- site-specific --- virtual pests --- rice plant --- weed --- hyperspectral imagery --- sustainable agriculture --- green technologies --- Internet of Things --- natural resources --- sustainable environment --- IoT ecosystem --- hyperspectral remoting sensing --- crop mapping --- image classification --- deep transfer learning --- hyperparameter optimization --- metaheuristic --- soil attribute --- ordinary Kriging --- rational sampling numbers --- spatial heterogeneity --- sampling --- soil pH --- spatial variation --- ordinary kriging --- Land Use/Land Cover --- LISS-III --- Landsat --- Vision Transformer --- Bidirectional long-short term memory --- Google Earth Engine --- Explainable Artificial Intelligence

Listing 1 - 7 of 7
Sort by