Listing 1 - 6 of 6 |
Sort by
|
Choose an application
Leonhard Euler (1707–1783) was born in Basel, Switzerland. Euler's formula is a mathematical formula in complex analysis that establishes the fundamental relationship between the trigonometric functions and the complex exponential function. When its variable is the number pi, Euler's formula evaluates to Euler's identity. On the other hand, the Yang–Baxter equation is considered the most beautiful equation by many scholars. In this book, we study connections between Euler’s formulas and the Yang–Baxter equation. Other interesting sections include: non-associative algebras with metagroup relations; branching functions for admissible representations of affine Lie Algebras; super-Virasoro algebras; dual numbers; UJLA structures; etc.
Research & information: general --- Mathematics & science --- transcendental numbers --- Euler formula --- Yang-Baxter equation --- Jordan algebras --- Lie algebras --- associative algebras --- coalgebras --- Euler's formula --- hyperbolic functions --- UJLA structures --- (co)derivation --- dual numbers --- operational methods --- umbral image techniques --- nonassociative algebra --- cohomology --- extension --- metagroup --- branching functions --- admissible representations --- characters --- affine Lie algebras --- super-Virasoro algebras --- nonassociative --- product --- smashed --- twisted wreath --- algebra --- separable --- ideal --- transcendental numbers --- Euler formula --- Yang-Baxter equation --- Jordan algebras --- Lie algebras --- associative algebras --- coalgebras --- Euler's formula --- hyperbolic functions --- UJLA structures --- (co)derivation --- dual numbers --- operational methods --- umbral image techniques --- nonassociative algebra --- cohomology --- extension --- metagroup --- branching functions --- admissible representations --- characters --- affine Lie algebras --- super-Virasoro algebras --- nonassociative --- product --- smashed --- twisted wreath --- algebra --- separable --- ideal
Choose an application
Leonhard Euler (1707–1783) was born in Basel, Switzerland. Euler's formula is a mathematical formula in complex analysis that establishes the fundamental relationship between the trigonometric functions and the complex exponential function. When its variable is the number pi, Euler's formula evaluates to Euler's identity. On the other hand, the Yang–Baxter equation is considered the most beautiful equation by many scholars. In this book, we study connections between Euler’s formulas and the Yang–Baxter equation. Other interesting sections include: non-associative algebras with metagroup relations; branching functions for admissible representations of affine Lie Algebras; super-Virasoro algebras; dual numbers; UJLA structures; etc.
transcendental numbers --- Euler formula --- Yang–Baxter equation --- Jordan algebras --- Lie algebras --- associative algebras --- coalgebras --- Euler’s formula --- hyperbolic functions --- UJLA structures --- (co)derivation --- dual numbers --- operational methods --- umbral image techniques --- nonassociative algebra --- cohomology --- extension --- metagroup --- branching functions --- admissible representations --- characters --- affine Lie algebras --- super-Virasoro algebras --- nonassociative --- product --- smashed --- twisted wreath --- algebra --- separable --- ideal --- n/a --- Yang-Baxter equation --- Euler's formula
Choose an application
This reprint focuses on exploring new developments in both pure and applied mathematics as a result of fractional behaviour. It covers the range of ongoing activities in the context of fractional calculus by offering alternate viewpoints, workable solutions, new derivatives, and methods to solve real-world problems. It is impossible to deny that fractional behaviour exists in nature. Any phenomenon that has a pulse, rhythm, or pattern appears to be a fractal. The 17 papers that were published and are part of this volume provide credence to that claim. A variety of topics illustrate the use of fractional calculus in a range of disciplines and offer sufficient coverage to pique every reader's attention.
Research & information: general --- Mathematics & science --- bessel function --- harmonically convex function --- non-singular function involving kernel fractional operator --- Hadamard inequality --- Fejér-Hadamard inequality --- Elzaki transform --- Caputo fractional derivative --- AB-fractional operator --- new iterative transform method --- Fisher's equation --- Hukuhara difference --- Atangana-Baleanu fractional derivative operator --- Mittag-Leffler kernel --- Fornberg-Whitham equation --- fractional div-curl systems --- Helmholtz decomposition theorem --- Riemann-Liouville derivative --- Caputo derivative --- fractional vector operators --- weighted (k,s) fractional integral operator --- weighted (k,s) fractional derivative --- weighted generalized Laplace transform --- fractional kinetic equation --- typhoid fever disease --- vaccination --- model calibration --- asymptotic stability --- fixed point theory --- nonlinear models --- efficiency index --- computational cost --- Halley's method --- basin of attraction --- computational order of convergence --- Caputo-Hadamard fractional derivative --- thermostat modeling --- Caputo-Hadamard fractional integral --- hybrid Caputo-Hadamard fractional differential equation and inclusion --- prey-predator model --- boundedness --- period-doubling bifurcation --- Neimark-Sacker bifurcation --- hybrid control --- fractal dimensions --- cubic B-splines --- trigonometric cubic B-splines --- extended cubic B-splines --- Caputo-Fabrizio derivative --- Cattaneo equation --- Hermite-Hadamard-type inequalities --- Hilfer fractional derivative --- Hölder's inequality --- fractional-order differential equations --- operational matrices --- shifted Vieta-Lucas polynomials --- Adomian decomposition method --- system of Whitham-Broer-Kaup equations --- Caputo-Fabrizio derivative --- Yang transform --- ϑ-Caputo derivative --- extremal solutions --- monotone iterative method --- sequences --- convex --- exponential convex --- fractional --- quantum --- inequalities --- Gould-Hopper-Laguerre-Sheffer matrix polynomials --- quasi-monomiality --- umbral calculus --- fractional calculus --- Euler's integral of gamma functions --- beta function --- generalized hypergeometric series --- operational methods --- delta function --- Riemann zeta-function --- fractional transforms --- Fox-Wright-function --- generalized fractional kinetic equation --- bessel function --- harmonically convex function --- non-singular function involving kernel fractional operator --- Hadamard inequality --- Fejér-Hadamard inequality --- Elzaki transform --- Caputo fractional derivative --- AB-fractional operator --- new iterative transform method --- Fisher's equation --- Hukuhara difference --- Atangana-Baleanu fractional derivative operator --- Mittag-Leffler kernel --- Fornberg-Whitham equation --- fractional div-curl systems --- Helmholtz decomposition theorem --- Riemann-Liouville derivative --- Caputo derivative --- fractional vector operators --- weighted (k,s) fractional integral operator --- weighted (k,s) fractional derivative --- weighted generalized Laplace transform --- fractional kinetic equation --- typhoid fever disease --- vaccination --- model calibration --- asymptotic stability --- fixed point theory --- nonlinear models --- efficiency index --- computational cost --- Halley's method --- basin of attraction --- computational order of convergence --- Caputo-Hadamard fractional derivative --- thermostat modeling --- Caputo-Hadamard fractional integral --- hybrid Caputo-Hadamard fractional differential equation and inclusion --- prey-predator model --- boundedness --- period-doubling bifurcation --- Neimark-Sacker bifurcation --- hybrid control --- fractal dimensions --- cubic B-splines --- trigonometric cubic B-splines --- extended cubic B-splines --- Caputo-Fabrizio derivative --- Cattaneo equation --- Hermite-Hadamard-type inequalities --- Hilfer fractional derivative --- Hölder's inequality --- fractional-order differential equations --- operational matrices --- shifted Vieta-Lucas polynomials --- Adomian decomposition method --- system of Whitham-Broer-Kaup equations --- Caputo-Fabrizio derivative --- Yang transform --- ϑ-Caputo derivative --- extremal solutions --- monotone iterative method --- sequences --- convex --- exponential convex --- fractional --- quantum --- inequalities --- Gould-Hopper-Laguerre-Sheffer matrix polynomials --- quasi-monomiality --- umbral calculus --- fractional calculus --- Euler's integral of gamma functions --- beta function --- generalized hypergeometric series --- operational methods --- delta function --- Riemann zeta-function --- fractional transforms --- Fox-Wright-function --- generalized fractional kinetic equation
Choose an application
This reprint focuses on exploring new developments in both pure and applied mathematics as a result of fractional behaviour. It covers the range of ongoing activities in the context of fractional calculus by offering alternate viewpoints, workable solutions, new derivatives, and methods to solve real-world problems. It is impossible to deny that fractional behaviour exists in nature. Any phenomenon that has a pulse, rhythm, or pattern appears to be a fractal. The 17 papers that were published and are part of this volume provide credence to that claim. A variety of topics illustrate the use of fractional calculus in a range of disciplines and offer sufficient coverage to pique every reader's attention.
Research & information: general --- Mathematics & science --- bessel function --- harmonically convex function --- non-singular function involving kernel fractional operator --- Hadamard inequality --- Fejér–Hadamard inequality --- Elzaki transform --- Caputo fractional derivative --- AB-fractional operator --- new iterative transform method --- Fisher’s equation --- Hukuhara difference --- Atangana–Baleanu fractional derivative operator --- Mittag–Leffler kernel --- Fornberg–Whitham equation --- fractional div-curl systems --- Helmholtz decomposition theorem --- Riemann–Liouville derivative --- Caputo derivative --- fractional vector operators --- weighted (k,s) fractional integral operator --- weighted (k,s) fractional derivative --- weighted generalized Laplace transform --- fractional kinetic equation --- typhoid fever disease --- vaccination --- model calibration --- asymptotic stability --- fixed point theory --- nonlinear models --- efficiency index --- computational cost --- Halley’s method --- basin of attraction --- computational order of convergence --- Caputo–Hadamard fractional derivative --- thermostat modeling --- Caputo–Hadamard fractional integral --- hybrid Caputo–Hadamard fractional differential equation and inclusion --- prey-predator model --- boundedness --- period-doubling bifurcation --- Neimark-Sacker bifurcation --- hybrid control --- fractal dimensions --- cubic B-splines --- trigonometric cubic B-splines --- extended cubic B-splines --- Caputo–Fabrizio derivative --- Cattaneo equation --- Hermite-Hadamard-type inequalities --- Hilfer fractional derivative --- Hölder’s inequality --- fractional-order differential equations --- operational matrices --- shifted Vieta–Lucas polynomials --- Adomian decomposition method --- system of Whitham-Broer-Kaup equations --- Caputo-Fabrizio derivative --- Yang transform --- ϑ-Caputo derivative --- extremal solutions --- monotone iterative method --- sequences --- convex --- exponential convex --- fractional --- quantum --- inequalities --- Gould-Hopper-Laguerre-Sheffer matrix polynomials --- quasi-monomiality --- umbral calculus --- fractional calculus --- Euler’s integral of gamma functions --- beta function --- generalized hypergeometric series --- operational methods --- delta function --- Riemann zeta-function --- fractional transforms --- Fox–Wright-function --- generalized fractional kinetic equation --- n/a --- Fejér-Hadamard inequality --- Fisher's equation --- Atangana-Baleanu fractional derivative operator --- Mittag-Leffler kernel --- Fornberg-Whitham equation --- Riemann-Liouville derivative --- Halley's method --- Caputo-Hadamard fractional derivative --- Caputo-Hadamard fractional integral --- hybrid Caputo-Hadamard fractional differential equation and inclusion --- Hölder's inequality --- shifted Vieta-Lucas polynomials --- Euler's integral of gamma functions --- Fox-Wright-function
Choose an application
This reprint focuses on exploring new developments in both pure and applied mathematics as a result of fractional behaviour. It covers the range of ongoing activities in the context of fractional calculus by offering alternate viewpoints, workable solutions, new derivatives, and methods to solve real-world problems. It is impossible to deny that fractional behaviour exists in nature. Any phenomenon that has a pulse, rhythm, or pattern appears to be a fractal. The 17 papers that were published and are part of this volume provide credence to that claim. A variety of topics illustrate the use of fractional calculus in a range of disciplines and offer sufficient coverage to pique every reader's attention.
bessel function --- harmonically convex function --- non-singular function involving kernel fractional operator --- Hadamard inequality --- Fejér–Hadamard inequality --- Elzaki transform --- Caputo fractional derivative --- AB-fractional operator --- new iterative transform method --- Fisher’s equation --- Hukuhara difference --- Atangana–Baleanu fractional derivative operator --- Mittag–Leffler kernel --- Fornberg–Whitham equation --- fractional div-curl systems --- Helmholtz decomposition theorem --- Riemann–Liouville derivative --- Caputo derivative --- fractional vector operators --- weighted (k,s) fractional integral operator --- weighted (k,s) fractional derivative --- weighted generalized Laplace transform --- fractional kinetic equation --- typhoid fever disease --- vaccination --- model calibration --- asymptotic stability --- fixed point theory --- nonlinear models --- efficiency index --- computational cost --- Halley’s method --- basin of attraction --- computational order of convergence --- Caputo–Hadamard fractional derivative --- thermostat modeling --- Caputo–Hadamard fractional integral --- hybrid Caputo–Hadamard fractional differential equation and inclusion --- prey-predator model --- boundedness --- period-doubling bifurcation --- Neimark-Sacker bifurcation --- hybrid control --- fractal dimensions --- cubic B-splines --- trigonometric cubic B-splines --- extended cubic B-splines --- Caputo–Fabrizio derivative --- Cattaneo equation --- Hermite-Hadamard-type inequalities --- Hilfer fractional derivative --- Hölder’s inequality --- fractional-order differential equations --- operational matrices --- shifted Vieta–Lucas polynomials --- Adomian decomposition method --- system of Whitham-Broer-Kaup equations --- Caputo-Fabrizio derivative --- Yang transform --- ϑ-Caputo derivative --- extremal solutions --- monotone iterative method --- sequences --- convex --- exponential convex --- fractional --- quantum --- inequalities --- Gould-Hopper-Laguerre-Sheffer matrix polynomials --- quasi-monomiality --- umbral calculus --- fractional calculus --- Euler’s integral of gamma functions --- beta function --- generalized hypergeometric series --- operational methods --- delta function --- Riemann zeta-function --- fractional transforms --- Fox–Wright-function --- generalized fractional kinetic equation --- n/a --- Fejér-Hadamard inequality --- Fisher's equation --- Atangana-Baleanu fractional derivative operator --- Mittag-Leffler kernel --- Fornberg-Whitham equation --- Riemann-Liouville derivative --- Halley's method --- Caputo-Hadamard fractional derivative --- Caputo-Hadamard fractional integral --- hybrid Caputo-Hadamard fractional differential equation and inclusion --- Hölder's inequality --- shifted Vieta-Lucas polynomials --- Euler's integral of gamma functions --- Fox-Wright-function
Choose an application
Researches and investigations involving the theory and applications of integral transforms and operational calculus are remarkably wide-spread in many diverse areas of the mathematical, physical, chemical, engineering and statistical sciences.
infinite-point boundary conditions --- nonlinear boundary value problems --- q-polynomials --- ?-generalized Hurwitz–Lerch zeta functions --- Hadamard product --- password --- summation formulas --- Hankel determinant --- multi-strip --- Euler numbers and polynomials --- natural transform --- fuzzy volterra integro-differential equations --- zeros --- fuzzy differential equations --- Szász operator --- q)-Bleimann–Butzer–Hahn operators --- distortion theorems --- analytic function --- generating relations --- differential operator --- pseudo-Chebyshev polynomials --- Chebyshev polynomials --- Mellin transform --- uniformly convex functions --- operational methods --- differential equation --- ?-convex function --- Fourier transform --- q)-analogue of tangent zeta function --- q -Hermite–Genocchi polynomials --- Dunkl analogue --- derivative properties --- q)-Euler numbers and polynomials of higher order --- exact solutions --- encryption --- spectrum symmetry --- advanced and deviated arguments --- PBKDF --- wavelet transform of generalized functions --- fuzzy general linear method --- Lommel functions --- highly oscillatory Bessel kernel --- generalized mittag-leffler function --- audio features --- the uniqueness of the solution --- analytic --- Mittag–Leffler functions --- Dziok–Srivastava operator --- Bell numbers --- rate of approximation --- Bessel kernel --- univalent functions --- inclusion relationships --- Liouville–Caputo-type fractional derivative --- tangent polynomials --- Bernoulli spiral --- multi-point --- q -Hermite–Euler polynomials --- analytic functions --- Fredholm integral equation --- orthogonality property --- Struve functions --- cryptography --- Janowski star-like function --- starlike and q-starlike functions --- piecewise Hermite collocation method --- uniformly starlike and convex functions --- q -Hermite–Bernoulli polynomials --- generalized functions --- meromorphic function --- basic hypergeometric functions --- fractional-order differential equations --- q -Sheffer–Appell polynomials --- integral representations --- Srivastava–Tomovski generalization of Mittag–Leffler function --- Caputo fractional derivative --- Bernoulli --- symmetric --- sufficient conditions --- nonlocal --- the existence of a solution --- functions of bounded boundary and bounded radius rotations --- differential inclusion --- symmetry of the zero --- recurrence relation --- nonlinear boundary value problem --- Volterra integral equations --- Ulam stability --- q)-analogue of tangent numbers and polynomials --- starlike function --- function spaces and their duals --- strongly starlike functions --- q)-Bernstein operators --- vibrating string equation --- ?-generalized Hurwitz-Lerch zeta functions --- bound on derivatives --- Janowski convex function --- volterra integral equation --- strongly-starlike function --- Hadamard product (convolution) --- regular solution --- generalized Hukuhara differentiability --- functions with positive real part --- exponential function --- q–Bleimann–Butzer–Hahn operators --- Carlitz-type q-tangent polynomials --- distributions --- Carlitz-type q-tangent numbers --- starlike functions --- Riemann-Stieltjes functional integral --- hash --- K-functional --- (p --- Euler --- truncated-exponential polynomials --- Maple graphs --- Hurwitz-Euler eta function --- higher order Schwarzian derivatives --- generating functions --- strongly convex functions --- Hölder condition --- multiple Hurwitz-Euler eta function --- recurrence relations --- q-starlike functions --- partial sum --- Euler and Genocchi polynomials --- tangent numbers --- spectral decomposition --- determinant definition --- monomiality principle --- highly oscillatory --- Hurwitz-Lerch zeta function --- Adomian decomposition method --- analytic number theory --- existence --- existence of at least one solution --- symmetric identities --- modulus of continuity --- modified Kudryashov method --- MFCC --- q-hypergeometric functions --- differential subordination --- Janowski functions --- and Genocchi numbers --- series representation --- initial conditions --- generalization of exponential function --- upper bound --- q-derivative (or q-difference) operator --- DCT --- Schwartz testing function space --- anuran calls --- generalized Kuramoto–Sivashinsky equation --- Mittag–Leffler function --- subordination --- Hardy space --- convergence --- Hermite interpolation --- direct Hermite collocation method --- q-Euler numbers and polynomials --- distribution space --- Apostol-type polynomials and Apostol-type numbers --- Schauder fixed point theorem --- fractional integral --- convolution quadrature rule --- q)-integers --- Liouville-Caputo fractional derivative --- fixed point --- convex functions --- Grandi curves --- tempered distributions --- higher order q-Euler numbers and polynomials --- radius estimate
Listing 1 - 6 of 6 |
Sort by
|