Narrow your search

Library

ULiège (7)

FARO (6)

KU Leuven (6)

LUCA School of Arts (6)

Odisee (6)

Thomas More Kempen (6)

Thomas More Mechelen (6)

UCLL (6)

ULB (6)

VIVES (6)

More...

Resource type

book (15)


Language

English (15)


Year
From To Submit

2022 (4)

2021 (6)

2020 (3)

2019 (1)

1985 (1)

Listing 1 - 10 of 15 << page
of 2
>>
Sort by

Book
New high-efficiency silicon solar cells
Authors: --- --- --- ---
Year: 1985 Publisher: Pasadena, California : [Washington, D.C.] : Jet Propulsion Laboratory, California Institute of Technology ; the U.S. Department of Energy : National Aeronautics and Space Administration,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Advanced Materials and Nanotechnology for Sustainable Energy and Environmental Applications
Authors: ---
ISBN: 3036552308 3036552294 Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Materials play a very important role in the technological development of a society. As a consequence, the continuous demand for more advanced and sophisticated applications is closely linked to the availability of innovative materials. Although aspects related to the study, the synthesis and the applications of materials are of interdisciplinary interest, in the last few years, great attention has been paid to the development of advanced materials for environmental preservation and sustainable energy technologies, such as gaseous pollutant monitoring, waste water treatment, catalysis, carbon dioxide valorization, green fuel production, energy saving, water adsorption and clean technologies. This Special Issue aims at covering the current design, synthesis and characterization of innovative advanced materials, as well as novel nanotechnologies able to offer promising solutions to the these pressing themes.


Book
Advanced Materials and Technologies for Fuel Cells
Authors: --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Fuel cells are expected to play a relevant role in the transition towards a sustainable-energy-driven world. Although this type of electrochemical system was discovered a long time ago, only in recent years has global energy awareness, together with newly developed materials and available technologies, made such key advances in relation to fuel cell potential and its deployment. It is now unquestionable that fuel cells are recognized, alongside their possibility to work in the reverse mode, as the hub of the new energy deal. Now the questions are, why are they not yet ready to be used, despite the strong economic support given from the society? What prevents them from being entered into the hydrogen energy scenario in which renewable sources will provide energy when it is not readily available? How much are researchers involved in this urgent step towards change? This book gives a clear answer, engaging with some of the open issues that explain the delay of fuel cell deployment and, at the same time, it opens a window that shows how wide and attractive the opportunities offered by this technology are. Papers collected here are not only specialist-oriented but also offer a clear landscape to curious readers and show how challenging the road to the future is.


Book
Advanced Materials and Technologies for Fuel Cells
Authors: --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Fuel cells are expected to play a relevant role in the transition towards a sustainable-energy-driven world. Although this type of electrochemical system was discovered a long time ago, only in recent years has global energy awareness, together with newly developed materials and available technologies, made such key advances in relation to fuel cell potential and its deployment. It is now unquestionable that fuel cells are recognized, alongside their possibility to work in the reverse mode, as the hub of the new energy deal. Now the questions are, why are they not yet ready to be used, despite the strong economic support given from the society? What prevents them from being entered into the hydrogen energy scenario in which renewable sources will provide energy when it is not readily available? How much are researchers involved in this urgent step towards change? This book gives a clear answer, engaging with some of the open issues that explain the delay of fuel cell deployment and, at the same time, it opens a window that shows how wide and attractive the opportunities offered by this technology are. Papers collected here are not only specialist-oriented but also offer a clear landscape to curious readers and show how challenging the road to the future is.


Book
Advanced Materials and Technologies for Fuel Cells
Authors: --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Fuel cells are expected to play a relevant role in the transition towards a sustainable-energy-driven world. Although this type of electrochemical system was discovered a long time ago, only in recent years has global energy awareness, together with newly developed materials and available technologies, made such key advances in relation to fuel cell potential and its deployment. It is now unquestionable that fuel cells are recognized, alongside their possibility to work in the reverse mode, as the hub of the new energy deal. Now the questions are, why are they not yet ready to be used, despite the strong economic support given from the society? What prevents them from being entered into the hydrogen energy scenario in which renewable sources will provide energy when it is not readily available? How much are researchers involved in this urgent step towards change? This book gives a clear answer, engaging with some of the open issues that explain the delay of fuel cell deployment and, at the same time, it opens a window that shows how wide and attractive the opportunities offered by this technology are. Papers collected here are not only specialist-oriented but also offer a clear landscape to curious readers and show how challenging the road to the future is.

Keywords

Research & information: general --- Technology: general issues --- polymer electrolyte fuel cell --- cyclic current profile --- transient behavior --- pressure drop --- Ohmic resistance --- solid oxide fuel cells (SOFCs) --- ionic conductivity --- Raman spectroscopy --- powder X-ray diffraction --- microbial fuel cell --- low-cost ceramics --- separator --- membrane --- porosity --- pore size --- water absorption --- mercury intrusion --- raman spectroscopy --- powder x-ray diffraction --- doped ceria --- solid oxides fuel cells --- Sm-doped ceria --- high pressure X-ray powder diffraction --- diamond anvil cell --- equation of state --- Rietveld refinement --- SOFC --- reliability --- contamination --- salt --- oxygen starvation --- concentration polarization --- fuel cell application --- microfluidic fuel cell --- power supply --- soft drinks --- hydrogen production --- alkaline water electrolysis --- two-phases flow --- CFD --- two-phase process --- BSCF --- SOEC --- rSOC --- anodic overpotential --- impedance spectroscopy --- sealants --- glass-ceramic --- joining --- CH4 internal reforming --- solid oxide fuel cell --- 2D local control --- cell design optimization --- active site degradation --- tape casting process --- open circuit voltage --- activation energy --- power density --- IT-SOFC --- PEM fuel cell --- useful water --- hydrogen consumption scenarios --- modified fuel utilization --- polymer electrolyte fuel cell --- cyclic current profile --- transient behavior --- pressure drop --- Ohmic resistance --- solid oxide fuel cells (SOFCs) --- ionic conductivity --- Raman spectroscopy --- powder X-ray diffraction --- microbial fuel cell --- low-cost ceramics --- separator --- membrane --- porosity --- pore size --- water absorption --- mercury intrusion --- raman spectroscopy --- powder x-ray diffraction --- doped ceria --- solid oxides fuel cells --- Sm-doped ceria --- high pressure X-ray powder diffraction --- diamond anvil cell --- equation of state --- Rietveld refinement --- SOFC --- reliability --- contamination --- salt --- oxygen starvation --- concentration polarization --- fuel cell application --- microfluidic fuel cell --- power supply --- soft drinks --- hydrogen production --- alkaline water electrolysis --- two-phases flow --- CFD --- two-phase process --- BSCF --- SOEC --- rSOC --- anodic overpotential --- impedance spectroscopy --- sealants --- glass-ceramic --- joining --- CH4 internal reforming --- solid oxide fuel cell --- 2D local control --- cell design optimization --- active site degradation --- tape casting process --- open circuit voltage --- activation energy --- power density --- IT-SOFC --- PEM fuel cell --- useful water --- hydrogen consumption scenarios --- modified fuel utilization


Book
Smart Materials and Devices for Energy Harvesting
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is devoted to energy harvesting from smart materials and devices. It focusses on the latest available techniques recently published by researchers all over the world. Energy Harvesting allows otherwise wasted environmental energy to be converted into electric energy, such as vibrations, wind and solar energy. It is a common experience that the limiting factor for wearable electronics, such as smartphones or wearable bands, or for wireless sensors in harsh environments, is the finite energy stored in onboard batteries. Therefore, the answer to the battery “charge or change” issue is energy harvesting because it converts the energy in the precise location where it is needed. In order to achieve this, suitable smart materials are needed, such as piezoelectrics or magnetostrictives. Moreover, energy harvesting may also be exploited for other crucial applications, such as for the powering of implantable medical/sensing devices for humans and animals. Therefore, energy harvesting from smart materials will become increasingly important in the future. This book provides a broad perspective on this topic for researchers and readers with both physics and engineering backgrounds.

Keywords

Technology: general issues --- History of engineering & technology --- magnetostrictive --- energy harvesting --- wearable --- magnetostrictive materials --- Galfenol --- finite element model --- iron-gallium --- measurements --- preisach model --- piezoelectric ceramics --- lead-free piezoceramics --- virtual instrument --- 3D electrospinning --- PVDF fibers --- piezoelectricity --- piezoelectric sensing --- wind energy harvesting --- snap-through motion --- dynamic stability --- variable-speed --- double-clamped --- width shapes --- piezoelectric energy harvester --- electrodes pair --- MEMS structure --- finite element method --- open circuit voltage --- moving load --- layered double hydroxide solar cell (LDHSC) --- photoactive material --- UV-Vis absorption --- dye sensitized solar cell (DSSC) --- photoactive layered double hydroxide (LDH) --- transition metal modification --- optical bandgap analysis --- renewable energy --- photovoltaic device design --- iron (Fe) modified MgFeAl LDH --- triboelectric effect --- polymer and composites --- low-power devices --- thermomagnetic energy generators --- power generation --- waste heat recovery --- lumped-element modelling --- magnetic shape memory films --- Ni-Mn-Ga film --- magnetization change --- Curie temperature --- finite element simulation --- piezoelectric unit distributions --- electrical potential and energy --- von Mises stress --- PVDF --- piezoelectric material --- human body movements --- glass fiber-reinforced polymer composite --- multifunctional structural laminate --- thermal energy harvesting --- through-thickness thermal gradient --- thermoelectric generator (TEG) --- magnetostrictive --- energy harvesting --- wearable --- magnetostrictive materials --- Galfenol --- finite element model --- iron-gallium --- measurements --- preisach model --- piezoelectric ceramics --- lead-free piezoceramics --- virtual instrument --- 3D electrospinning --- PVDF fibers --- piezoelectricity --- piezoelectric sensing --- wind energy harvesting --- snap-through motion --- dynamic stability --- variable-speed --- double-clamped --- width shapes --- piezoelectric energy harvester --- electrodes pair --- MEMS structure --- finite element method --- open circuit voltage --- moving load --- layered double hydroxide solar cell (LDHSC) --- photoactive material --- UV-Vis absorption --- dye sensitized solar cell (DSSC) --- photoactive layered double hydroxide (LDH) --- transition metal modification --- optical bandgap analysis --- renewable energy --- photovoltaic device design --- iron (Fe) modified MgFeAl LDH --- triboelectric effect --- polymer and composites --- low-power devices --- thermomagnetic energy generators --- power generation --- waste heat recovery --- lumped-element modelling --- magnetic shape memory films --- Ni-Mn-Ga film --- magnetization change --- Curie temperature --- finite element simulation --- piezoelectric unit distributions --- electrical potential and energy --- von Mises stress --- PVDF --- piezoelectric material --- human body movements --- glass fiber-reinforced polymer composite --- multifunctional structural laminate --- thermal energy harvesting --- through-thickness thermal gradient --- thermoelectric generator (TEG)


Book
Energy Storage Systems for Electric Vehicles
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The global electric car fleet exceeded 7 million battery electric vehicles and plug-in hybrid electric vehicles in 2019, and will continue to increase in the future, as electrification is an important means of decreasing the greenhouse gas emissions of the transportation sector. The energy storage system is a very central component of the electric vehicle. The storage system needs to be cost-competitive, light, efficient, safe, and reliable, and to occupy little space and last for a long time. It should also be produced and disposed of in an environmentally friendly manner. This leaves many research challenges, and the purpose of this book is therefore to provide a platform for sharing the latest findings on energy storage systems for electric vehicles (electric cars, buses, aircraft, ships, etc.) Research in energy storage systems requires several sciences working together, and this book therefore include contributions from many different disciplines; this covers a wide range of topics, e.g. battery-management systems, state-of-charge and state-of-health estimation, thermal-battery-management systems, power electronics for energy storage devices, battery aging modelling, battery reuse and recycling, etc.

Keywords

History of engineering & technology --- lithium-ion batteries --- non-aqueous electrolyte --- nitrile-based solvents --- butyronitrile --- SEI forming additives --- fast charging --- power batteries --- improved second-order RC equivalent circuit --- fuzzy unscented Kalman filtering algorithm --- joint estimation --- electric bus --- battery --- energy efficiency --- environmental conditions --- hybrid electric vehicles (HEVs) --- battery life --- multi-objective energy management --- adaptive equivalent consumption minimization strategy (A-ECMS) --- pontryagin’s minimum principle (PMP) --- particle swarm optimization (PSO) --- recurrent-neural-network (RNN) --- fuel cell hybrid electric vehicle --- least squares support vector machines (LSSVM) --- driving conditions identification --- power distribution --- electric vehicle --- lithium-ion battery --- estimation --- Kalman filter --- state-of-charge --- state-of-health --- resistance --- open-circuit voltage --- battery capacity --- battery modelling and simulation --- battery testing cycler --- battery thermal model --- lithium-ion polymer battery --- SLI battery --- dual-motor energy recovery --- regenerative braking system --- CVT speed ratio control --- motor minimum loss --- energy consumption and efficiency characteristics --- braking force distribution --- oil–electric–hydraulic hybrid system --- lowest instantaneous energy costs --- energy management --- global optimization --- retired batteries --- energy storage applications --- layered bidirectional equalization --- equalization algorithm --- state of charge --- available capacity --- adaptive model-based algorithm --- square root cubature Kalman filter --- li-ion battery --- performance degradation modelling --- electrified propulsion --- battery sizing --- powertrain optimization --- optimal energy management --- heat and mass transfer --- thermal analysis --- Lithium-ion battery --- micro-channel cooling plate --- battery thermal management --- MeshWorks --- CFD --- diffusion induced stress --- hydrostatic stress influence on diffusion --- electrode particle model --- battery mechanical aging --- coulomb counting --- open circuit voltage --- state of health --- temperature --- new energy vehicle --- power battery --- battery reusing --- echelon utilization --- battery recycling --- electric vehicles --- electro-hydraulic braking --- braking intention --- mode switching --- torque coordinated control --- Electric Truck Simulator --- Electric Vehicle (EV) --- Vehicle Routing Problem (VRP) --- Traveling Salesman Problem (TSP) --- least-energy routing algorithm --- EV batteries --- metric evaluation --- AC–AC converters --- battery chargers --- power conversion harmonics --- wireless power transmission --- electrochemical–thermal model --- artificial intelligence --- artificial neural networks --- hybrid vehicles --- state-of-charge estimation (SOC) --- linear quadratic estimator --- lithium ion battery --- iron phosphate --- cell expansion --- force --- lithium-ion cobalt battery --- state of energy --- adaptive EKF SOC estimation --- linear observer SOC estimation --- MATLAB --- Simscape --- electric buses --- thermal energy storage --- latent heat storage --- metallic phase change material --- cabin heating --- fuel cell --- automated guided vehicle --- hybrid energy storage system --- model-based design --- waveforms modeling --- autoregressive models of nonstationary signals


Book
Energy Storage Systems for Electric Vehicles
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The global electric car fleet exceeded 7 million battery electric vehicles and plug-in hybrid electric vehicles in 2019, and will continue to increase in the future, as electrification is an important means of decreasing the greenhouse gas emissions of the transportation sector. The energy storage system is a very central component of the electric vehicle. The storage system needs to be cost-competitive, light, efficient, safe, and reliable, and to occupy little space and last for a long time. It should also be produced and disposed of in an environmentally friendly manner. This leaves many research challenges, and the purpose of this book is therefore to provide a platform for sharing the latest findings on energy storage systems for electric vehicles (electric cars, buses, aircraft, ships, etc.) Research in energy storage systems requires several sciences working together, and this book therefore include contributions from many different disciplines; this covers a wide range of topics, e.g. battery-management systems, state-of-charge and state-of-health estimation, thermal-battery-management systems, power electronics for energy storage devices, battery aging modelling, battery reuse and recycling, etc.

Keywords

lithium-ion batteries --- non-aqueous electrolyte --- nitrile-based solvents --- butyronitrile --- SEI forming additives --- fast charging --- power batteries --- improved second-order RC equivalent circuit --- fuzzy unscented Kalman filtering algorithm --- joint estimation --- electric bus --- battery --- energy efficiency --- environmental conditions --- hybrid electric vehicles (HEVs) --- battery life --- multi-objective energy management --- adaptive equivalent consumption minimization strategy (A-ECMS) --- pontryagin’s minimum principle (PMP) --- particle swarm optimization (PSO) --- recurrent-neural-network (RNN) --- fuel cell hybrid electric vehicle --- least squares support vector machines (LSSVM) --- driving conditions identification --- power distribution --- electric vehicle --- lithium-ion battery --- estimation --- Kalman filter --- state-of-charge --- state-of-health --- resistance --- open-circuit voltage --- battery capacity --- battery modelling and simulation --- battery testing cycler --- battery thermal model --- lithium-ion polymer battery --- SLI battery --- dual-motor energy recovery --- regenerative braking system --- CVT speed ratio control --- motor minimum loss --- energy consumption and efficiency characteristics --- braking force distribution --- oil–electric–hydraulic hybrid system --- lowest instantaneous energy costs --- energy management --- global optimization --- retired batteries --- energy storage applications --- layered bidirectional equalization --- equalization algorithm --- state of charge --- available capacity --- adaptive model-based algorithm --- square root cubature Kalman filter --- li-ion battery --- performance degradation modelling --- electrified propulsion --- battery sizing --- powertrain optimization --- optimal energy management --- heat and mass transfer --- thermal analysis --- Lithium-ion battery --- micro-channel cooling plate --- battery thermal management --- MeshWorks --- CFD --- diffusion induced stress --- hydrostatic stress influence on diffusion --- electrode particle model --- battery mechanical aging --- coulomb counting --- open circuit voltage --- state of health --- temperature --- new energy vehicle --- power battery --- battery reusing --- echelon utilization --- battery recycling --- electric vehicles --- electro-hydraulic braking --- braking intention --- mode switching --- torque coordinated control --- Electric Truck Simulator --- Electric Vehicle (EV) --- Vehicle Routing Problem (VRP) --- Traveling Salesman Problem (TSP) --- least-energy routing algorithm --- EV batteries --- metric evaluation --- AC–AC converters --- battery chargers --- power conversion harmonics --- wireless power transmission --- electrochemical–thermal model --- artificial intelligence --- artificial neural networks --- hybrid vehicles --- state-of-charge estimation (SOC) --- linear quadratic estimator --- lithium ion battery --- iron phosphate --- cell expansion --- force --- lithium-ion cobalt battery --- state of energy --- adaptive EKF SOC estimation --- linear observer SOC estimation --- MATLAB --- Simscape --- electric buses --- thermal energy storage --- latent heat storage --- metallic phase change material --- cabin heating --- fuel cell --- automated guided vehicle --- hybrid energy storage system --- model-based design --- waveforms modeling --- autoregressive models of nonstationary signals


Book
Smart Materials and Devices for Energy Harvesting
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is devoted to energy harvesting from smart materials and devices. It focusses on the latest available techniques recently published by researchers all over the world. Energy Harvesting allows otherwise wasted environmental energy to be converted into electric energy, such as vibrations, wind and solar energy. It is a common experience that the limiting factor for wearable electronics, such as smartphones or wearable bands, or for wireless sensors in harsh environments, is the finite energy stored in onboard batteries. Therefore, the answer to the battery “charge or change” issue is energy harvesting because it converts the energy in the precise location where it is needed. In order to achieve this, suitable smart materials are needed, such as piezoelectrics or magnetostrictives. Moreover, energy harvesting may also be exploited for other crucial applications, such as for the powering of implantable medical/sensing devices for humans and animals. Therefore, energy harvesting from smart materials will become increasingly important in the future. This book provides a broad perspective on this topic for researchers and readers with both physics and engineering backgrounds.

Keywords

Technology: general issues --- History of engineering & technology --- magnetostrictive --- energy harvesting --- wearable --- magnetostrictive materials --- Galfenol --- finite element model --- iron–gallium --- measurements --- preisach model --- piezoelectric ceramics --- lead-free piezoceramics --- virtual instrument --- 3D electrospinning --- PVDF fibers --- piezoelectricity --- piezoelectric sensing --- wind energy harvesting --- snap-through motion --- dynamic stability --- variable-speed --- double-clamped --- width shapes --- piezoelectric energy harvester --- electrodes pair --- MEMS structure --- finite element method --- open circuit voltage --- moving load --- layered double hydroxide solar cell (LDHSC) --- photoactive material --- UV-Vis absorption --- dye sensitized solar cell (DSSC) --- photoactive layered double hydroxide (LDH) --- transition metal modification --- optical bandgap analysis --- renewable energy --- photovoltaic device design --- iron (Fe) modified MgFeAl LDH --- triboelectric effect --- polymer and composites --- low-power devices --- thermomagnetic energy generators --- power generation --- waste heat recovery --- lumped-element modelling --- magnetic shape memory films --- Ni-Mn-Ga film --- magnetization change --- Curie temperature --- finite element simulation --- piezoelectric unit distributions --- electrical potential and energy --- von Mises stress --- PVDF --- piezoelectric material --- human body movements --- glass fiber-reinforced polymer composite --- multifunctional structural laminate --- thermal energy harvesting --- through-thickness thermal gradient --- thermoelectric generator (TEG) --- n/a --- iron-gallium


Book
Smart Materials and Devices for Energy Harvesting
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is devoted to energy harvesting from smart materials and devices. It focusses on the latest available techniques recently published by researchers all over the world. Energy Harvesting allows otherwise wasted environmental energy to be converted into electric energy, such as vibrations, wind and solar energy. It is a common experience that the limiting factor for wearable electronics, such as smartphones or wearable bands, or for wireless sensors in harsh environments, is the finite energy stored in onboard batteries. Therefore, the answer to the battery “charge or change” issue is energy harvesting because it converts the energy in the precise location where it is needed. In order to achieve this, suitable smart materials are needed, such as piezoelectrics or magnetostrictives. Moreover, energy harvesting may also be exploited for other crucial applications, such as for the powering of implantable medical/sensing devices for humans and animals. Therefore, energy harvesting from smart materials will become increasingly important in the future. This book provides a broad perspective on this topic for researchers and readers with both physics and engineering backgrounds.

Keywords

magnetostrictive --- energy harvesting --- wearable --- magnetostrictive materials --- Galfenol --- finite element model --- iron–gallium --- measurements --- preisach model --- piezoelectric ceramics --- lead-free piezoceramics --- virtual instrument --- 3D electrospinning --- PVDF fibers --- piezoelectricity --- piezoelectric sensing --- wind energy harvesting --- snap-through motion --- dynamic stability --- variable-speed --- double-clamped --- width shapes --- piezoelectric energy harvester --- electrodes pair --- MEMS structure --- finite element method --- open circuit voltage --- moving load --- layered double hydroxide solar cell (LDHSC) --- photoactive material --- UV-Vis absorption --- dye sensitized solar cell (DSSC) --- photoactive layered double hydroxide (LDH) --- transition metal modification --- optical bandgap analysis --- renewable energy --- photovoltaic device design --- iron (Fe) modified MgFeAl LDH --- triboelectric effect --- polymer and composites --- low-power devices --- thermomagnetic energy generators --- power generation --- waste heat recovery --- lumped-element modelling --- magnetic shape memory films --- Ni-Mn-Ga film --- magnetization change --- Curie temperature --- finite element simulation --- piezoelectric unit distributions --- electrical potential and energy --- von Mises stress --- PVDF --- piezoelectric material --- human body movements --- glass fiber-reinforced polymer composite --- multifunctional structural laminate --- thermal energy harvesting --- through-thickness thermal gradient --- thermoelectric generator (TEG) --- n/a --- iron-gallium

Listing 1 - 10 of 15 << page
of 2
>>
Sort by