Narrow your search

Library

FARO (1)

KU Leuven (1)

LUCA School of Arts (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UCLL (1)

ULB (1)

ULiège (1)

VIVES (1)

More...

Resource type

book (3)


Language

English (3)


Year
From To Submit

2022 (3)

Listing 1 - 3 of 3
Sort by

Book
Statistical Fluid Dynamics
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Modeling micrometric and nanometric suspensions remains a major issue. They help to model the mechanical, thermal, and electrical properties, among others, of the suspensions, and then of the resulting product, in a controlled way, when considered in material formation. In some cases, they can help to improve the energy transport performance. The optimal use of these products is based on an accurate prediction of the flow-induced properties of the suspensions and, consequently, of the resulting products and parts. The final properties of the resulting micro-structured fluid or solid are radically different from the simple mixing rule. In this book, we found numerous works addressing the description of these specific fluid behaviors.

Keywords

Technology: general issues --- History of engineering & technology --- Materials science --- graphene nano-powder --- thermal nanofluid --- rheological behavior --- Carreau nanofluid --- lubrication effect --- Vallejo law --- liquid-liquid interface --- shear rate --- nanoparticles --- diffuse interface --- phase field method --- molecular dynamics --- numerical simulation --- octree optimization --- microstructure generation --- domain reconstruction --- flow simulation --- permeability computing --- data-driven model --- model order reduction --- proper orthogonal decomposition --- manifold learning --- diffuse approximation --- microcapsule suspension --- Hausdorff distance --- topological data analysis (TDA) --- reinforced polymers --- concentrated suspensions --- flow induced orientation --- discrete numerical simulation --- steam generator --- void fraction --- mixture model --- porous media approach --- reduced-order model --- Proper Orthogonal Decomposition (POD) --- energy dissipation --- interval-pooled stepped spillway --- omega identification method --- Navier-Stokes equation --- singularity --- transitional flow --- turbulence --- Poisson equation --- nanoparticle two-phase flow --- particle coagulation and breakage --- flow around circular cylinders --- particle distribution --- graphene nano-powder --- thermal nanofluid --- rheological behavior --- Carreau nanofluid --- lubrication effect --- Vallejo law --- liquid-liquid interface --- shear rate --- nanoparticles --- diffuse interface --- phase field method --- molecular dynamics --- numerical simulation --- octree optimization --- microstructure generation --- domain reconstruction --- flow simulation --- permeability computing --- data-driven model --- model order reduction --- proper orthogonal decomposition --- manifold learning --- diffuse approximation --- microcapsule suspension --- Hausdorff distance --- topological data analysis (TDA) --- reinforced polymers --- concentrated suspensions --- flow induced orientation --- discrete numerical simulation --- steam generator --- void fraction --- mixture model --- porous media approach --- reduced-order model --- Proper Orthogonal Decomposition (POD) --- energy dissipation --- interval-pooled stepped spillway --- omega identification method --- Navier-Stokes equation --- singularity --- transitional flow --- turbulence --- Poisson equation --- nanoparticle two-phase flow --- particle coagulation and breakage --- flow around circular cylinders --- particle distribution


Book
Statistical Fluid Dynamics
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Modeling micrometric and nanometric suspensions remains a major issue. They help to model the mechanical, thermal, and electrical properties, among others, of the suspensions, and then of the resulting product, in a controlled way, when considered in material formation. In some cases, they can help to improve the energy transport performance. The optimal use of these products is based on an accurate prediction of the flow-induced properties of the suspensions and, consequently, of the resulting products and parts. The final properties of the resulting micro-structured fluid or solid are radically different from the simple mixing rule. In this book, we found numerous works addressing the description of these specific fluid behaviors.


Book
Statistical Fluid Dynamics
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Modeling micrometric and nanometric suspensions remains a major issue. They help to model the mechanical, thermal, and electrical properties, among others, of the suspensions, and then of the resulting product, in a controlled way, when considered in material formation. In some cases, they can help to improve the energy transport performance. The optimal use of these products is based on an accurate prediction of the flow-induced properties of the suspensions and, consequently, of the resulting products and parts. The final properties of the resulting micro-structured fluid or solid are radically different from the simple mixing rule. In this book, we found numerous works addressing the description of these specific fluid behaviors.

Listing 1 - 3 of 3
Sort by