Listing 1 - 10 of 126 | << page >> |
Sort by
|
Choose an application
Ordered algebraic structures --- Number theory --- 511.6 --- Algebraic number fields --- 511.6 Algebraic number fields
Choose an application
511.6 --- Algebraic number theory --- Number theory --- Algebraic number fields --- 511.6 Algebraic number fields
Choose an application
511.6 --- 511.6 Algebraic number fields --- Algebraic number fields --- Differential forms --- Formes differentielles
Choose an application
Algebraic number theory --- 511.6 --- Number theory --- 511.6 Algebraic number fields --- Algebraic number fields
Choose an application
511.6 --- 511.6 Algebraic number fields --- Algebraic number fields --- Number Theory --- Nombres, Théorie des
Choose an application
Algebraic number theory --- 511.6 --- Number theory --- 511.6 Algebraic number fields --- Algebraic number fields
Choose an application
This unique textbook focuses on the structure of fields and is intended for a second course in abstract algebra. Besides providing proofs of the transcendance of pi and e, the book includes material on differential Galois groups and a proof of Hilbert's irreducibility theorem. The reader will hear about equations, both polynomial and differential, and about the algebraic structure of their solutions. In explaining these concepts, the author also provides comments on their historical development and leads the reader along many interesting paths. In addition, there are theorems from analysis: as stated before, the transcendence of the numbers pi and e, the fact that the complex numbers form an algebraically closed field, and also Puiseux's theorem that shows how one can parametrize the roots of polynomial equations, the coefficients of which are allowed to vary. There are exercises at the end of each chapter, varying in degree from easy to difficult. To make the book more lively, the author has incorporated pictures from the history of mathematics, including scans of mathematical stamps and pictures of mathematicians. Antoine Chambert-Loir taught this book when he was Professor at École polytechnique, Palaiseau, France. He is now Professor at Université de Rennes 1.
Algebraic fields. --- Algebraic number fields --- Algebraic numbers --- Fields, Algebraic
Choose an application
No detailed description available for "The Arithmetic of Function Fields".
Drinfeld modules --- -Algebraic fields --- -Algebraic number fields --- -511.6 Algebraic number fields --- Algebraic fields --- 511.6 --- 511.6 Algebraic number fields --- Algebraic number fields --- Modules (Algebra) --- Algebraic numbers --- Fields, Algebraic --- Algebra, Abstract --- Algebraic number theory --- Rings (Algebra) --- Congresses --- Congresses.
Choose an application
Number theory --- 511.6 --- Algebraic number theory --- Algebraic number fields --- Algebraic number theory. --- 511.6 Algebraic number fields
Choose an application
Number theory --- Théorie des nombres --- 511.6 --- Algebraic number fields --- 511.6 Algebraic number fields --- Théorie des nombres
Listing 1 - 10 of 126 | << page >> |
Sort by
|