Narrow your search

Library

FARO (3)

KU Leuven (3)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

ULB (3)

ULiège (3)

VIVES (3)

More...

Resource type

book (5)


Language

English (5)


Year
From To Submit

2019 (5)

Listing 1 - 5 of 5
Sort by

Book
Tsunami Science and Engineering II
Author:
ISBN: 3039216732 3039216724 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Earthquake-tsunamis, including the 2004 Indian Ocean Tsunami and the 2011 T?hoku Tsunami in Japan, serve as tragic reminders that such waves pose a major natural hazard. Landslide-tsunamis, including the 1958 Lituya Bay case, may exceed 150 m in height, and similar waves generated in lakes and reservoirs may overtop dams and cause significant devastation. This book includes nine peer-review articles from some of the leading experts in the field of tsunami research. The collection represents a wide range of topics covering (i) wave generation, (ii) wave propagation, and (iii) their effects. Within (i), a tsunami source combining an underwater fault rupture and a landslide are addressed in the laboratory. Within (ii), frequency dispersion with the nonlinear shallow-water equations is considered and a detailed account of the 1755 Lisbon earthquake, tsunami, and fire in downtown Lisbon is presented. Two articles involve all three phases (i) to (iii), including runup and dam over-topping. Within (iii), a new semi-empirical equation for runup is introduced and the interaction of tsunamis with bridges and pipelines is investigated in large laboratory experiments. This state-of-the-art collection of articles is expected to improve modelling and mitigate the destructive effects of tsunamis and inspire many future research activities in this challenging and exciting research field.


Book
Symmetries of Nonlinear PDEs on Metric Graphs and Branched Networks
Authors: ---
ISBN: 3039217216 3039217208 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue focuses on recent progress in a new area of mathematical physics and applied analysis, namely, on nonlinear partial differential equations on metric graphs and branched networks. Graphs represent a system of edges connected at one or more branching points (vertices). The connection rule determines the graph topology. When the edges can be assigned a length and the wave functions on the edges are defined in metric spaces, the graph is called a metric graph. Evolution equations on metric graphs have attracted much attention as effective tools for the modeling of particle and wave dynamics in branched structures and networks. Since branched structures and networks appear in different areas of contemporary physics with many applications in electronics, biology, material science, and nanotechnology, the development of effective modeling tools is important for the many practical problems arising in these areas. The list of important problems includes searches for standing waves, exploring of their properties (e.g., stability and asymptotic behavior), and scattering dynamics. This Special Issue is a representative sample of the works devoted to the solutions of these and other problems.


Book
Turbulence in River and Maritime Hydraulics
Authors: --- ---
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Understanding of the role of turbulence in controlling transport processes is of paramount importance for the preservation and protection of aquatic ecosystems, the minimization of the deleterious consequences of anthropogenic activity, and the successful sustainable development of river and maritime areas. In this context, the present Special Issue collects 15 papers which provide a representation of the present understanding of turbulent processes and their effects in river and maritime environments. The presented collection of papers is not exhaustive, but it highlights the key priority areas and knowledge gaps in this field of research. The published papers present the state-of-the-art knowledge of complex environmental flows which are useful for researchers and practitioners. The paper contents are an overview of some recent topics of research and an exposure of the current and future challenges associated with these topics.

Keywords

inclined negatively buoyant jets --- flow mixing --- Kelvin–Helmholtz --- flow-through system --- mixing --- regular waves --- vegetation patch --- turbulence invariants --- junction angle --- gravel-bed rivers --- spatial analysis --- spectral model --- coastal lagoon --- roughness --- MIKE 21 FM (HD) --- billow --- dissipation --- river mouth --- waves --- advection --- wave–current interaction --- plunging breaking waves --- turbulence --- flow deflection zone --- smoothed particle hydrodynamics models --- numerical modelling --- physical modelling --- surface waves --- lobe --- dilution --- numerical model --- channel confluences --- prediction --- meanders --- CFD --- bedrock canyon --- MIKE 3 FM (HD & --- SVF --- diffusion --- dense jet --- sub-grid turbulence --- flow separation zone --- breaking waves --- Spartina maritima --- jets --- maritime areas --- flow retardation zone --- seabed friction --- sea discharges --- secondary motion --- ADCP --- cleft --- submerged ratio --- laboratory experiments --- wake region --- eddy viscosity --- bottom friction --- casting technique --- turbulent jet --- tidal inlets --- rivers --- nonlinear shallow water equations --- vorticity --- hydrodynamic model --- flow resistance --- PANORMUS --- spectral dissipation --- TR) --- macrovortices --- turbulent processes --- velocity --- trajectory --- flexible vegetation --- energy dissipation --- gravity current --- bed shear stress --- current flow --- drag coefficient --- residence time --- wave attenuation


Book
Turbulence in River and Maritime Hydraulics
Authors: --- ---
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Understanding of the role of turbulence in controlling transport processes is of paramount importance for the preservation and protection of aquatic ecosystems, the minimization of the deleterious consequences of anthropogenic activity, and the successful sustainable development of river and maritime areas. In this context, the present Special Issue collects 15 papers which provide a representation of the present understanding of turbulent processes and their effects in river and maritime environments. The presented collection of papers is not exhaustive, but it highlights the key priority areas and knowledge gaps in this field of research. The published papers present the state-of-the-art knowledge of complex environmental flows which are useful for researchers and practitioners. The paper contents are an overview of some recent topics of research and an exposure of the current and future challenges associated with these topics.

Keywords

inclined negatively buoyant jets --- flow mixing --- Kelvin–Helmholtz --- flow-through system --- mixing --- regular waves --- vegetation patch --- turbulence invariants --- junction angle --- gravel-bed rivers --- spatial analysis --- spectral model --- coastal lagoon --- roughness --- MIKE 21 FM (HD) --- billow --- dissipation --- river mouth --- waves --- advection --- wave–current interaction --- plunging breaking waves --- turbulence --- flow deflection zone --- smoothed particle hydrodynamics models --- numerical modelling --- physical modelling --- surface waves --- lobe --- dilution --- numerical model --- channel confluences --- prediction --- meanders --- CFD --- bedrock canyon --- MIKE 3 FM (HD & --- SVF --- diffusion --- dense jet --- sub-grid turbulence --- flow separation zone --- breaking waves --- Spartina maritima --- jets --- maritime areas --- flow retardation zone --- seabed friction --- sea discharges --- secondary motion --- ADCP --- cleft --- submerged ratio --- laboratory experiments --- wake region --- eddy viscosity --- bottom friction --- casting technique --- turbulent jet --- tidal inlets --- rivers --- nonlinear shallow water equations --- vorticity --- hydrodynamic model --- flow resistance --- PANORMUS --- spectral dissipation --- TR) --- macrovortices --- turbulent processes --- velocity --- trajectory --- flexible vegetation --- energy dissipation --- gravity current --- bed shear stress --- current flow --- drag coefficient --- residence time --- wave attenuation


Book
Turbulence in River and Maritime Hydraulics
Authors: --- ---
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Understanding of the role of turbulence in controlling transport processes is of paramount importance for the preservation and protection of aquatic ecosystems, the minimization of the deleterious consequences of anthropogenic activity, and the successful sustainable development of river and maritime areas. In this context, the present Special Issue collects 15 papers which provide a representation of the present understanding of turbulent processes and their effects in river and maritime environments. The presented collection of papers is not exhaustive, but it highlights the key priority areas and knowledge gaps in this field of research. The published papers present the state-of-the-art knowledge of complex environmental flows which are useful for researchers and practitioners. The paper contents are an overview of some recent topics of research and an exposure of the current and future challenges associated with these topics.

Keywords

inclined negatively buoyant jets --- flow mixing --- Kelvin–Helmholtz --- flow-through system --- mixing --- regular waves --- vegetation patch --- turbulence invariants --- junction angle --- gravel-bed rivers --- spatial analysis --- spectral model --- coastal lagoon --- roughness --- MIKE 21 FM (HD) --- billow --- dissipation --- river mouth --- waves --- advection --- wave–current interaction --- plunging breaking waves --- turbulence --- flow deflection zone --- smoothed particle hydrodynamics models --- numerical modelling --- physical modelling --- surface waves --- lobe --- dilution --- numerical model --- channel confluences --- prediction --- meanders --- CFD --- bedrock canyon --- MIKE 3 FM (HD & --- SVF --- diffusion --- dense jet --- sub-grid turbulence --- flow separation zone --- breaking waves --- Spartina maritima --- jets --- maritime areas --- flow retardation zone --- seabed friction --- sea discharges --- secondary motion --- ADCP --- cleft --- submerged ratio --- laboratory experiments --- wake region --- eddy viscosity --- bottom friction --- casting technique --- turbulent jet --- tidal inlets --- rivers --- nonlinear shallow water equations --- vorticity --- hydrodynamic model --- flow resistance --- PANORMUS --- spectral dissipation --- TR) --- macrovortices --- turbulent processes --- velocity --- trajectory --- flexible vegetation --- energy dissipation --- gravity current --- bed shear stress --- current flow --- drag coefficient --- residence time --- wave attenuation --- inclined negatively buoyant jets --- flow mixing --- Kelvin–Helmholtz --- flow-through system --- mixing --- regular waves --- vegetation patch --- turbulence invariants --- junction angle --- gravel-bed rivers --- spatial analysis --- spectral model --- coastal lagoon --- roughness --- MIKE 21 FM (HD) --- billow --- dissipation --- river mouth --- waves --- advection --- wave–current interaction --- plunging breaking waves --- turbulence --- flow deflection zone --- smoothed particle hydrodynamics models --- numerical modelling --- physical modelling --- surface waves --- lobe --- dilution --- numerical model --- channel confluences --- prediction --- meanders --- CFD --- bedrock canyon --- MIKE 3 FM (HD & --- SVF --- diffusion --- dense jet --- sub-grid turbulence --- flow separation zone --- breaking waves --- Spartina maritima --- jets --- maritime areas --- flow retardation zone --- seabed friction --- sea discharges --- secondary motion --- ADCP --- cleft --- submerged ratio --- laboratory experiments --- wake region --- eddy viscosity --- bottom friction --- casting technique --- turbulent jet --- tidal inlets --- rivers --- nonlinear shallow water equations --- vorticity --- hydrodynamic model --- flow resistance --- PANORMUS --- spectral dissipation --- TR) --- macrovortices --- turbulent processes --- velocity --- trajectory --- flexible vegetation --- energy dissipation --- gravity current --- bed shear stress --- current flow --- drag coefficient --- residence time --- wave attenuation

Listing 1 - 5 of 5
Sort by