Listing 1 - 2 of 2 |
Sort by
|
Choose an application
Microwave imaging techniques allow for the development of systems that are able to inspect, identify, and characterize in a noninvasive fashion under different scenarios, ranging from biomedical to subsurface diagnostics as well as from surveillance and security applications to nondestructive evaluation. Such great opportunities, though, are actually severely limited by difficulties arising from the solution of the underlying inverse scattering problem. As a result, ongoing research efforts in this area are devoted to developing inversion strategies and experimental apparatus so that they are as reliable and accurate as possible with respect to reconstruction capabilities and resolution performance, respectively. The intent of this Special Issue is to present the experiences of leading scientists in the electromagnetic inverse scattering community, as well as to serve as an assessment tool for people who are new to the area of microwave imaging and electromagnetic inverse scattering problems.
joint sparsity --- magnetic resonance imaging --- near-field measurements --- rank minimization --- compressed sensing --- array diagnosis --- microwave plasma diagnostics --- radar-based breast imaging --- image-based approach --- contraction integral equation for inversion (CIE-I) --- nonlinear optimization --- contrast-source inversion --- electromagnetic inverse scattering problems --- nonlinear problem --- tomography --- RCS estimation --- inverse problems --- discontinuous Galerkin method (DGM) --- microwave imaging profilometry --- electrical-property tomography --- breast imaging --- antenna array --- finite-difference methods --- adjoint inversion methods --- Bayesian compressive sensing (BCS) --- orthogonality sampling method --- inverse scattering --- linear sampling method --- breast cancer --- contrast source inversion (CSI) --- imaging --- electromagnetic inverse scattering --- antenna testing --- stopping criteria --- 3D --- microwave imaging --- Kolmogorov-Smirnov (K-S) test --- inverse obstacles problem --- 5G communication --- inverse source problem
Choose an application
This book is the first to comprehensively explore elasticity imaging and examines recent, important developments in asymptotic imaging, modeling, and analysis of deterministic and stochastic elastic wave propagation phenomena. It derives the best possible functional images for small inclusions and cracks within the context of stability and resolution, and introduces a topological derivative-based imaging framework for detecting elastic inclusions in the time-harmonic regime. For imaging extended elastic inclusions, accurate optimal control methodologies are designed and the effects of uncertainties of the geometric or physical parameters on stability and resolution properties are evaluated. In particular, the book shows how localized damage to a mechanical structure affects its dynamic characteristics, and how measured eigenparameters are linked to elastic inclusion or crack location, orientation, and size. Demonstrating a novel method for identifying, locating, and estimating inclusions and cracks in elastic structures, the book opens possibilities for a mathematical and numerical framework for elasticity imaging of nanoparticles and cellular structures.
Elasticity --- Elastic properties --- Young's modulus --- Mathematical physics --- Matter --- Statics --- Rheology --- Strains and stresses --- Strength of materials --- Mathematics. --- Properties --- Dirichlet function. --- Helmholtz decomposition theorem. --- Helmholtz decomposition. --- HelmholtzЋirchhoff identities. --- Kelvin matrix. --- Kirchhoff migration. --- Lam system. --- MUSIC algorithm. --- Neumann boundary condition. --- anisotropic elasticity. --- asymptotic expansion. --- asymptotic formula. --- asymptotic imaging. --- ball. --- boundary displacement. --- boundary perturbation. --- boundary value problem. --- boundedness. --- cellular structure. --- compressional modulus. --- crack. --- density parameter. --- direct imaging. --- discrepancy function. --- displacement field. --- displacement. --- elastic coefficient. --- elastic equation. --- elastic inclusion. --- elastic moment tensor. --- elastic structure. --- elastic wave equation. --- elastic wave propagation. --- elastic wave. --- elasticity equation. --- elasticity imaging. --- elasticity. --- ellipse. --- energy functional. --- extended inclusion. --- extended source term. --- extended target. --- far-field measurement. --- filtered quadratic misfit. --- function space. --- gradient scheme. --- hard inclusion. --- hard inclusions. --- heterogeneous shear distribution. --- high contrast coefficient. --- hole. --- imaging functional. --- inclusion. --- incompressible limit. --- internal displacement measurement. --- layer potential. --- linear elasticity. --- linear transformation. --- linearized reconstruction problem. --- measurement noise. --- medium noise. --- nanoparticle. --- nonlinear optimization problem. --- nonlinear problem. --- operator-valued function. --- optimal control. --- potential energy functional. --- pressure. --- radiation condition. --- random fluctuation. --- resolution. --- reverse-time migration. --- scalar wave equation. --- search algorithm. --- shape change. --- shape deformation. --- shape. --- shear distribution. --- shear modulus. --- shear wave. --- small crack. --- small inclusion. --- small-volume expansion. --- small-volume inclusion. --- soft inclusion. --- stability analysis. --- stability. --- static regime. --- stochastic modeling. --- time-harmonic regime. --- time-reversal imaging. --- topological derivative. --- vibration testing.
Listing 1 - 2 of 2 |
Sort by
|