Listing 1 - 10 of 10
Sort by

Periodical
Metallurgical abstracts on light metals and alloys
Author:
ISSN: 05435706 Year: 1962 Publisher: Osaka The light metal educational foundation.

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
COST 512 : modelling in materials science and processing : MMSP'96 general workshop, Davos (Switzerland) 29 September - 2 October 1996
Authors: --- ---
ISBN: 9282776611 9789282776612 Year: 1996 Publisher: Brussels: European communities. Commission,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Multi
Inelasticity and micromechanics of metal matrix composites
Authors: ---
ISBN: 9781483290447 1483290441 0444818006 9780444818003 1322277419 Year: 1994 Publisher: Amsterdam, Netherlands : Elsevier,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book contains fifteen papers based on the presentations made at the symposium on ""Inelasticity and Micromechanics of Metal Matrix Composites"" held at the University of Washington, USA, in mid-1994. The papers represent the most recent work conducted on inelasticity and micromechanics of metal matrix composites. The book is divided into two parts: Part I deals with the study of inelastic deformation in metal matrix composites, while Part II tackles the micromechanical aspects of metal matrix composites. The articles discuss different aspects of these two topics ranging from purely theore


Book
Textures of Materials : proceedings of the eleventh international conference on textures of materials : ICOTOM-11 : September 16-20, 1996, Xi'an, China.

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Inelasticity and micromechanics of metal matrix composites
Authors: ---
ISBN: 0444818006 1322277419 1483290441 9781483290447 9780444818003 Year: 1994 Publisher: Amsterdam New York

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book contains fifteen papers based on the presentations made at the symposium on ""Inelasticity and Micromechanics of Metal Matrix Composites"" held at the University of Washington, USA, in mid-1994. The papers represent the most recent work conducted on inelasticity and micromechanics of metal matrix composites. The book is divided into two parts: Part I deals with the study of inelastic deformation in metal matrix composites, while Part II tackles the micromechanical aspects of metal matrix composites. The articles discuss different aspects of these two topics ranging from purely theore

Surface cleaning, finishing, and coating.
Author:
ISBN: 0871700115 9780871700117 Year: 1982 Volume: 5 Publisher: Metals Park (Ohio) : American society for metals,


Book
Advances in Understanding of Unit Operations in Non-ferrous Extractive Metallurgy 2021
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Unit metallurgical operations processes are usually separated into three categories: 1) hydrometallurgy (leaching, mixing, neutralization, precipitation, cementation, and crystallization); 2) pyrometallurgy (roasting and smelting); and 3) electrometallurgy (aqueous electrolysis and molten salt electrolysis). In hydrometallurgy, the aimed metal is first transferred from ores and concentrates to a solution using a selective dissolution (leaching or dry digestion) under an atmospheric pressure below 100 °C and under a high pressure (40-50 bar) and high temperature (below 270°C) in an autoclave. The purification of the obtained solution was performed using neutralization agents such as sodium hydroxide and calcium carbonate or more selective precipitation agents such as sodium carbonate and oxalic acid. The separation of metals is possible using a liquid/liquid process (solvent extraction in mixer-settler) and solid–liquid (filtration in filter-press under high pressure). Crystallization is the process by which a metallic compound is converted from a liquid into a solid crystalline state via a supersaturated solution. The final step is metal production using electrochemical methods (aqueous electrolysis for basic metals such as copper, zinc, silver, and molten salt electrolysis for rare earth elements and aluminum). Advanced processes, such as ultrasonic spray pyrolysis and microwave-assisted leaching, can be combined with reduction processes in order to produce metallic powders.

Keywords

Technology: general issues --- History of engineering & technology --- Mining technology & engineering --- zirconium --- eudialyte --- hydrometallurgy --- basic sulfate precipitation --- macroporous polymer --- goethite --- factorial design --- desorption --- tailings reprocessing --- early stage cost estimation --- magnetic separation --- leaching --- flotation --- silica --- ultrasonic spray pyrolysis --- synthesis --- acid mine drainage --- red mud --- neutralization --- immobilization --- precipitation --- nitinol --- continuous vertical cast (CVC), NiTi rod --- atomic layer deposition --- corrosion properties --- potentiodynamic test --- electrochemical impedance spectroscopy --- rare earth elements --- recycling --- NdFeB --- magnet --- non-ferrous metals --- cavitation erosion --- optical microscopy --- electron microscopy --- atomic force microscopy --- aluminium --- thin-layer electrolysis --- molten salts --- halides --- capillary cell --- electrorefining --- non-commercial copper anode --- waste solution --- high content --- Ni --- Pb --- Sn --- Sb --- passivation --- anode slime --- pentlandite --- oxidation --- reaction mechanism --- phase analysis --- silver --- copper --- nanoparticles --- antibacterial --- MnO2 --- cobalt oxide Co3O4 --- perovskite materials --- oxygen reduction in alkaline media --- electrocatalyst --- Pt catalyst --- nanocomposite --- mixed oxides --- NiAl2O4 --- ZnAl2O4 --- electrocatalysis --- nanocatalyst --- noble metal nanoparticles --- leachate --- metal ions extraction --- selectivity --- Fe removal --- electrodeposition --- conductometry --- n/a


Book
Advances in Understanding of Unit Operations in Non-ferrous Extractive Metallurgy 2021
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Unit metallurgical operations processes are usually separated into three categories: 1) hydrometallurgy (leaching, mixing, neutralization, precipitation, cementation, and crystallization); 2) pyrometallurgy (roasting and smelting); and 3) electrometallurgy (aqueous electrolysis and molten salt electrolysis). In hydrometallurgy, the aimed metal is first transferred from ores and concentrates to a solution using a selective dissolution (leaching or dry digestion) under an atmospheric pressure below 100 °C and under a high pressure (40-50 bar) and high temperature (below 270°C) in an autoclave. The purification of the obtained solution was performed using neutralization agents such as sodium hydroxide and calcium carbonate or more selective precipitation agents such as sodium carbonate and oxalic acid. The separation of metals is possible using a liquid/liquid process (solvent extraction in mixer-settler) and solid–liquid (filtration in filter-press under high pressure). Crystallization is the process by which a metallic compound is converted from a liquid into a solid crystalline state via a supersaturated solution. The final step is metal production using electrochemical methods (aqueous electrolysis for basic metals such as copper, zinc, silver, and molten salt electrolysis for rare earth elements and aluminum). Advanced processes, such as ultrasonic spray pyrolysis and microwave-assisted leaching, can be combined with reduction processes in order to produce metallic powders.

Keywords

zirconium --- eudialyte --- hydrometallurgy --- basic sulfate precipitation --- macroporous polymer --- goethite --- factorial design --- desorption --- tailings reprocessing --- early stage cost estimation --- magnetic separation --- leaching --- flotation --- silica --- ultrasonic spray pyrolysis --- synthesis --- acid mine drainage --- red mud --- neutralization --- immobilization --- precipitation --- nitinol --- continuous vertical cast (CVC), NiTi rod --- atomic layer deposition --- corrosion properties --- potentiodynamic test --- electrochemical impedance spectroscopy --- rare earth elements --- recycling --- NdFeB --- magnet --- non-ferrous metals --- cavitation erosion --- optical microscopy --- electron microscopy --- atomic force microscopy --- aluminium --- thin-layer electrolysis --- molten salts --- halides --- capillary cell --- electrorefining --- non-commercial copper anode --- waste solution --- high content --- Ni --- Pb --- Sn --- Sb --- passivation --- anode slime --- pentlandite --- oxidation --- reaction mechanism --- phase analysis --- silver --- copper --- nanoparticles --- antibacterial --- MnO2 --- cobalt oxide Co3O4 --- perovskite materials --- oxygen reduction in alkaline media --- electrocatalyst --- Pt catalyst --- nanocomposite --- mixed oxides --- NiAl2O4 --- ZnAl2O4 --- electrocatalysis --- nanocatalyst --- noble metal nanoparticles --- leachate --- metal ions extraction --- selectivity --- Fe removal --- electrodeposition --- conductometry --- n/a


Book
Advances in Understanding of Unit Operations in Non-ferrous Extractive Metallurgy 2021
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Unit metallurgical operations processes are usually separated into three categories: 1) hydrometallurgy (leaching, mixing, neutralization, precipitation, cementation, and crystallization); 2) pyrometallurgy (roasting and smelting); and 3) electrometallurgy (aqueous electrolysis and molten salt electrolysis). In hydrometallurgy, the aimed metal is first transferred from ores and concentrates to a solution using a selective dissolution (leaching or dry digestion) under an atmospheric pressure below 100 °C and under a high pressure (40-50 bar) and high temperature (below 270°C) in an autoclave. The purification of the obtained solution was performed using neutralization agents such as sodium hydroxide and calcium carbonate or more selective precipitation agents such as sodium carbonate and oxalic acid. The separation of metals is possible using a liquid/liquid process (solvent extraction in mixer-settler) and solid–liquid (filtration in filter-press under high pressure). Crystallization is the process by which a metallic compound is converted from a liquid into a solid crystalline state via a supersaturated solution. The final step is metal production using electrochemical methods (aqueous electrolysis for basic metals such as copper, zinc, silver, and molten salt electrolysis for rare earth elements and aluminum). Advanced processes, such as ultrasonic spray pyrolysis and microwave-assisted leaching, can be combined with reduction processes in order to produce metallic powders.

Keywords

Technology: general issues --- History of engineering & technology --- Mining technology & engineering --- zirconium --- eudialyte --- hydrometallurgy --- basic sulfate precipitation --- macroporous polymer --- goethite --- factorial design --- desorption --- tailings reprocessing --- early stage cost estimation --- magnetic separation --- leaching --- flotation --- silica --- ultrasonic spray pyrolysis --- synthesis --- acid mine drainage --- red mud --- neutralization --- immobilization --- precipitation --- nitinol --- continuous vertical cast (CVC), NiTi rod --- atomic layer deposition --- corrosion properties --- potentiodynamic test --- electrochemical impedance spectroscopy --- rare earth elements --- recycling --- NdFeB --- magnet --- non-ferrous metals --- cavitation erosion --- optical microscopy --- electron microscopy --- atomic force microscopy --- aluminium --- thin-layer electrolysis --- molten salts --- halides --- capillary cell --- electrorefining --- non-commercial copper anode --- waste solution --- high content --- Ni --- Pb --- Sn --- Sb --- passivation --- anode slime --- pentlandite --- oxidation --- reaction mechanism --- phase analysis --- silver --- copper --- nanoparticles --- antibacterial --- MnO2 --- cobalt oxide Co3O4 --- perovskite materials --- oxygen reduction in alkaline media --- electrocatalyst --- Pt catalyst --- nanocomposite --- mixed oxides --- NiAl2O4 --- ZnAl2O4 --- electrocatalysis --- nanocatalyst --- noble metal nanoparticles --- leachate --- metal ions extraction --- selectivity --- Fe removal --- electrodeposition --- conductometry

Listing 1 - 10 of 10
Sort by