Listing 1 - 10 of 15 | << page >> |
Sort by
|
Choose an application
Carbon materials are one of the most fascinating materials because of their unique properties and potential use in several applications. They can be obtained from residues or by using advanced synthesis technologies like chemical vapor deposition. The carbon family is very broad, ranging from classical activated carbons to more advanced species such as carbon nanotubes and graphene. The surface chemistry is one of the most interesting aspects of this broad family of materials, which allows the incorporation of different types of chemical functionalities or heteroatoms on the carbon surface, such as O, N, B, S, or P, which can modify the acid–base character, hydrophobicity/hydrophilicity, or the electronic properties of these materials and, thus, determine the final application. This book represents a collection of original research articles and communications focused on the synthesis, properties, and applications of heteroatom-doped functional carbon materials.
targeted adsorption --- graphene oxide --- bonding type --- oxygen reduction reaction (ORR) --- doping --- catalysis --- porous carbon --- Cd(II) --- nitrogen-doped graphene oxide --- sp3-defect --- heteroatoms --- amino group --- nitrogen-doped --- energy storage --- cross-link bond type --- energy power density --- polyaniline --- environmental remediation --- molten salt --- adsorption --- polyphosphates --- microcrystalline cellulose --- carbo microsphere --- Orange G --- carbon materials --- chemical functionalization --- physicochemical properties --- supercapacitor capacitance --- nanoparticles and shallow reservoirs --- pulse laser deposition --- co-activation method --- carbon capture and storage process (CCS) --- biochar --- CO2 --- adsorption studies --- graphene --- polypyrrole --- oxygen peroxide oxidation --- carbon nanotubes --- salt and base --- nanofluids --- carbon gels --- bio-phenol resin --- synergism --- magnetic moment --- photocatalysis --- oxygen reduction reaction --- carbon dioxide --- surface chemistry --- functionalized graphene oxide --- nitrogen-doped carbon materials --- N–doped carbon --- p-phenylene diamine --- electrochemical analysis --- mesoporosity --- carbon dioxide adsorption --- electrode material --- nitrogen-doped graphene --- nitrogen and oxygen doped activated carbon --- electrocatalysis --- supercapacitor
Choose an application
Currently, cobalt and related catalysts are very attractive as they provide many advantages, such as low cost and high activity, in a variety of applications. Cobalt catalysts are among the most active catalysts for Fischer–Tropsch synthesis and they promote the catalytic activity of the hydrodesulfurization catalysts. They also found other significant applications in environmental protection such as oxidation of volatile organic compounds, VOC, persulfate activator, ammonia synthesis, electrocatalysis and many more. Cobalt catalysts are active, stable and exhibit significant oxidation–reduction activity, as the Co can be found either as Co(II) or Co(III). Additionally, many molecules can interact with the cobalt supported phase by co-ordination due to partially filled d-orbital. Co-catalysts can be supported in almost all the inorganic supports such as alumina, titania, zeolites, etc. The cobalt oxide phase can be stabilized on the surface of the support due to variable interactions between the support and cobalt phase. These interactions are crucial for catalytic activity and can be regulated by proper selection of the preparation parameters such as the type of support, the Co loading, impregnation method and thermal conditions.This Special Issue aims to cover recent progress and advances in the field of cobalt and related catalysts.
Technology: general issues --- electrocatalyst --- oxygen reduction reaction --- Al-air battery --- biomass --- nitrogen-doped carbon --- halloysite --- hierarchical materials --- p-xylene oxidation --- terephthalic acid --- cobalt catalyst --- titania --- diffuse reflectance spectroscopy --- sulfamethaxazole --- persulfates --- point of zero charge --- Co-ZSM-5 --- UV-Vis diffuse reflection spectroscopy --- FTIR spectroscopy --- pyridine adsorption --- CO adsorption --- Fischer-Tropsch synthesis --- bimetallic catalyst --- cobalt-nickel alloys --- TPR-XANES/EXAFS --- superstructures --- bicontinuous microemulsion --- oxygen evolution reaction --- metal-metal oxides --- electrocatalyst --- oxygen reduction reaction --- Al-air battery --- biomass --- nitrogen-doped carbon --- halloysite --- hierarchical materials --- p-xylene oxidation --- terephthalic acid --- cobalt catalyst --- titania --- diffuse reflectance spectroscopy --- sulfamethaxazole --- persulfates --- point of zero charge --- Co-ZSM-5 --- UV-Vis diffuse reflection spectroscopy --- FTIR spectroscopy --- pyridine adsorption --- CO adsorption --- Fischer-Tropsch synthesis --- bimetallic catalyst --- cobalt-nickel alloys --- TPR-XANES/EXAFS --- superstructures --- bicontinuous microemulsion --- oxygen evolution reaction --- metal-metal oxides
Choose an application
This Special Issue is related to studies of the hydrogen production from formic acid decomposition. It is based on five research papers and two reviews. The reviews discuss the liquid phase formic acid decomposition over bimetallic (PdAg), molecular (Ru, Ir, Fe, Co), and heterogenized molecular catalysts. The gas-phase reaction is studied over highly dispersed Pd, Pt, Au, Cu, and Ni supported catalysts. It is shown that the nature of the catalyst’s support plays an important role for the reaction. Thus, N-doping of the carbon support provides a significant promotional effect. One of the reasons for the high activity of the N-doped catalysts is the formation of single-atom active sites stabilized by pyridinic N species present in the support. It is demonstrated that carbon materials can be N-doped in different ways. It can be performed either directly from N-containing compounds during the carbon synthesis or by a post-synthetic deposition of N-containing compounds on the carbon support with known properties. The Issue could be useful for specialists in catalysis and nanomaterials as well as for graduate students studying chemistry and chemical engineering. The reported results can be applied for development of catalysts for the hydrogen production from different liquid organic hydrogen carriers.
Technology: general issues --- formic acid decomposition --- hydrogen production --- CuO-CeO2/γ-Al2O3 --- multifuel processor --- copper catalyst --- oxygenates --- fuel cell --- Pd/C --- melamine --- g-C3N4 --- bipyridine --- phenanthroline --- N-doped carbon --- hydrogen --- formic acid --- platinum --- nitrogen doped --- carbon nanotubes --- carbon nanofibers --- heterogeneous catalysts --- bimetallic nanoparticles --- PdAg --- AgPd --- alloy --- nickel catalyst --- porous carbon support --- nitrogen doping --- hydrogen energetics --- hydrogen carrier --- formic acid dehydrogenation --- supported gold catalysts --- formic --- formate --- hybrid --- functionalization --- co-catalyst --- additive --- amine --- molecular catalyst --- nanocatalyst --- nano co-catalyst --- formic acid decomposition --- hydrogen production --- CuO-CeO2/γ-Al2O3 --- multifuel processor --- copper catalyst --- oxygenates --- fuel cell --- Pd/C --- melamine --- g-C3N4 --- bipyridine --- phenanthroline --- N-doped carbon --- hydrogen --- formic acid --- platinum --- nitrogen doped --- carbon nanotubes --- carbon nanofibers --- heterogeneous catalysts --- bimetallic nanoparticles --- PdAg --- AgPd --- alloy --- nickel catalyst --- porous carbon support --- nitrogen doping --- hydrogen energetics --- hydrogen carrier --- formic acid dehydrogenation --- supported gold catalysts --- formic --- formate --- hybrid --- functionalization --- co-catalyst --- additive --- amine --- molecular catalyst --- nanocatalyst --- nano co-catalyst
Choose an application
This Special Issue is related to studies of the hydrogen production from formic acid decomposition. It is based on five research papers and two reviews. The reviews discuss the liquid phase formic acid decomposition over bimetallic (PdAg), molecular (Ru, Ir, Fe, Co), and heterogenized molecular catalysts. The gas-phase reaction is studied over highly dispersed Pd, Pt, Au, Cu, and Ni supported catalysts. It is shown that the nature of the catalyst’s support plays an important role for the reaction. Thus, N-doping of the carbon support provides a significant promotional effect. One of the reasons for the high activity of the N-doped catalysts is the formation of single-atom active sites stabilized by pyridinic N species present in the support. It is demonstrated that carbon materials can be N-doped in different ways. It can be performed either directly from N-containing compounds during the carbon synthesis or by a post-synthetic deposition of N-containing compounds on the carbon support with known properties. The Issue could be useful for specialists in catalysis and nanomaterials as well as for graduate students studying chemistry and chemical engineering. The reported results can be applied for development of catalysts for the hydrogen production from different liquid organic hydrogen carriers.
Technology: general issues --- formic acid decomposition --- hydrogen production --- CuO-CeO2/γ-Al2O3 --- multifuel processor --- copper catalyst --- oxygenates --- fuel cell --- Pd/C --- melamine --- g-C3N4 --- bipyridine --- phenanthroline --- N-doped carbon --- hydrogen --- formic acid --- platinum --- nitrogen doped --- carbon nanotubes --- carbon nanofibers --- heterogeneous catalysts --- bimetallic nanoparticles --- PdAg --- AgPd --- alloy --- nickel catalyst --- porous carbon support --- nitrogen doping --- hydrogen energetics --- hydrogen carrier --- formic acid dehydrogenation --- supported gold catalysts --- formic --- formate --- hybrid --- functionalization --- co-catalyst --- additive --- amine --- molecular catalyst --- nanocatalyst --- nano co-catalyst
Choose an application
Currently, cobalt and related catalysts are very attractive as they provide many advantages, such as low cost and high activity, in a variety of applications. Cobalt catalysts are among the most active catalysts for Fischer–Tropsch synthesis and they promote the catalytic activity of the hydrodesulfurization catalysts. They also found other significant applications in environmental protection such as oxidation of volatile organic compounds, VOC, persulfate activator, ammonia synthesis, electrocatalysis and many more. Cobalt catalysts are active, stable and exhibit significant oxidation–reduction activity, as the Co can be found either as Co(II) or Co(III). Additionally, many molecules can interact with the cobalt supported phase by co-ordination due to partially filled d-orbital. Co-catalysts can be supported in almost all the inorganic supports such as alumina, titania, zeolites, etc. The cobalt oxide phase can be stabilized on the surface of the support due to variable interactions between the support and cobalt phase. These interactions are crucial for catalytic activity and can be regulated by proper selection of the preparation parameters such as the type of support, the Co loading, impregnation method and thermal conditions.This Special Issue aims to cover recent progress and advances in the field of cobalt and related catalysts.
electrocatalyst --- oxygen reduction reaction --- Al-air battery --- biomass --- nitrogen-doped carbon --- halloysite --- hierarchical materials --- p-xylene oxidation --- terephthalic acid --- cobalt catalyst --- titania --- diffuse reflectance spectroscopy --- sulfamethaxazole --- persulfates --- point of zero charge --- Co–ZSM-5 --- UV–Vis diffuse reflection spectroscopy --- FTIR spectroscopy --- pyridine adsorption --- CO adsorption --- Fischer–Tropsch synthesis --- bimetallic catalyst --- cobalt-nickel alloys --- TPR-XANES/EXAFS --- superstructures --- bicontinuous microemulsion --- oxygen evolution reaction --- metal–metal oxides --- n/a --- Co-ZSM-5 --- UV-Vis diffuse reflection spectroscopy --- Fischer-Tropsch synthesis --- metal-metal oxides
Choose an application
This Special Issue is related to studies of the hydrogen production from formic acid decomposition. It is based on five research papers and two reviews. The reviews discuss the liquid phase formic acid decomposition over bimetallic (PdAg), molecular (Ru, Ir, Fe, Co), and heterogenized molecular catalysts. The gas-phase reaction is studied over highly dispersed Pd, Pt, Au, Cu, and Ni supported catalysts. It is shown that the nature of the catalyst’s support plays an important role for the reaction. Thus, N-doping of the carbon support provides a significant promotional effect. One of the reasons for the high activity of the N-doped catalysts is the formation of single-atom active sites stabilized by pyridinic N species present in the support. It is demonstrated that carbon materials can be N-doped in different ways. It can be performed either directly from N-containing compounds during the carbon synthesis or by a post-synthetic deposition of N-containing compounds on the carbon support with known properties. The Issue could be useful for specialists in catalysis and nanomaterials as well as for graduate students studying chemistry and chemical engineering. The reported results can be applied for development of catalysts for the hydrogen production from different liquid organic hydrogen carriers.
formic acid decomposition --- hydrogen production --- CuO-CeO2/γ-Al2O3 --- multifuel processor --- copper catalyst --- oxygenates --- fuel cell --- Pd/C --- melamine --- g-C3N4 --- bipyridine --- phenanthroline --- N-doped carbon --- hydrogen --- formic acid --- platinum --- nitrogen doped --- carbon nanotubes --- carbon nanofibers --- heterogeneous catalysts --- bimetallic nanoparticles --- PdAg --- AgPd --- alloy --- nickel catalyst --- porous carbon support --- nitrogen doping --- hydrogen energetics --- hydrogen carrier --- formic acid dehydrogenation --- supported gold catalysts --- formic --- formate --- hybrid --- functionalization --- co-catalyst --- additive --- amine --- molecular catalyst --- nanocatalyst --- nano co-catalyst
Choose an application
This book, entitled “Plasma-Based Synthesis and Modification of Nanomaterials” is a collection of nine original research articles devoted to the application of different atmospheric pressure (APPs) and low-pressure (LPPs) plasmas for the synthesis or modification of various nanomaterials (NMs) of exceptional properties. These articles also show the structural and morphological characterization of the synthesized NMs and their further interesting and unique applications in different areas of science and technology. The readers interested in the capabilities of plasma-based treatments will quickly be convinced that APPs and LPPs enable one to efficiently synthesize or modify differentiated NMs using a minimal number of operations. Indeed, the presented procedures are eco-friendly and usually involve single-step processes, thus considerably lowering labor investment and costs. As a result, the production of new NMs and their functionalization is more straightforward and can be carried out on a much larger scale compared to other methods and procedures involving complex chemical treatments and processes. The size and morphology, as well as the structural and optical properties of the resulting NMs are tunable and tailorable. In addition to the desirable and reproducible physical dimensions, crystallinity, functionality, and spectral properties of the resultant NMs, the NMs fabricated and/or modified with the aid of APPs are commonly ready-to-use prior to their specific applications, without any initial pre-treatments.
plasma–liquid interactions --- n/a --- plasma synthesis --- pre-treatment --- liquid phase plasma --- anode materials --- CO-hydrogenation --- nanoparticles --- Clavibacter michiganensis --- cold atmospheric-pressure plasma --- mercury ion --- dielectric barrier discharge --- low-temperature Fischer–Tropsch --- nanocellulose --- nanoparticle --- solution plasma --- activated carbon powder --- ionic liquid --- nitrogen-doped carbon --- heat transfer --- polymer nanocomposite --- Dickeya solani --- stabilizer --- plant protection --- pulsed plasma in liquid --- Xanthomonas campestris pv. campestris --- Pd-Fe alloy --- quercetin --- iron oxide nanoparticle --- phytopathogens --- pseudo-capacitive characteristics --- submerged liquid plasma --- atmospheric pressure plasma --- plasma treatment --- Ralstonia solanacearum --- batteries --- nano-catalysts --- direct current atmospheric pressure glow discharge --- nanostructures --- Erwinia amylovora --- carbon dots --- silicon --- capacitively coupled plasma --- necrosis --- upconversion --- quarantine --- plasma-liquid interactions --- low-temperature Fischer-Tropsch
Choose an application
This Special Issue collects papers devoted to organic coatings based on polymers, graphene, and their combinations. These systems have great potentialities in the development of advanced materials for functional applications. In particular, graphene-based coatings on polymer substrates have interesting electrical characteristics, which are very sensible to the temperature and, therefore, they are very adequate for developing sensing materials and other types of functional materials.
Research & information: general --- Physics --- Si-containing diamond-like carbon film --- near-edge X-ray absorption fine structure --- dependence on the elemental composition --- graphene oxide --- green chemical reduction --- ascorbic acid --- reduced graphene oxide --- graphite nanoplatelet coatings --- low-density polyethylene --- differential scanning calorimetry --- dynamical-mechanical-thermal analyses --- thermoresistive properties --- optical-grade epoxy --- inorganic scintillator --- alkali metal halides --- adhesion --- interface --- Coulomb forces --- optical properties --- clinoptilolite --- impedimetric sensor --- surface conductivity --- apnea syndrome monitoring --- voltage drop --- microwave --- plasma-enhanced --- CVD --- nitrogen-doped --- graphene --- catalyst-less --- transfer-less --- synthesis --- n/a --- graphite platelet coatings --- thermal expansion coefficient --- phase transitions
Choose an application
Currently, cobalt and related catalysts are very attractive as they provide many advantages, such as low cost and high activity, in a variety of applications. Cobalt catalysts are among the most active catalysts for Fischer–Tropsch synthesis and they promote the catalytic activity of the hydrodesulfurization catalysts. They also found other significant applications in environmental protection such as oxidation of volatile organic compounds, VOC, persulfate activator, ammonia synthesis, electrocatalysis and many more. Cobalt catalysts are active, stable and exhibit significant oxidation–reduction activity, as the Co can be found either as Co(II) or Co(III). Additionally, many molecules can interact with the cobalt supported phase by co-ordination due to partially filled d-orbital. Co-catalysts can be supported in almost all the inorganic supports such as alumina, titania, zeolites, etc. The cobalt oxide phase can be stabilized on the surface of the support due to variable interactions between the support and cobalt phase. These interactions are crucial for catalytic activity and can be regulated by proper selection of the preparation parameters such as the type of support, the Co loading, impregnation method and thermal conditions.This Special Issue aims to cover recent progress and advances in the field of cobalt and related catalysts.
Technology: general issues --- electrocatalyst --- oxygen reduction reaction --- Al-air battery --- biomass --- nitrogen-doped carbon --- halloysite --- hierarchical materials --- p-xylene oxidation --- terephthalic acid --- cobalt catalyst --- titania --- diffuse reflectance spectroscopy --- sulfamethaxazole --- persulfates --- point of zero charge --- Co–ZSM-5 --- UV–Vis diffuse reflection spectroscopy --- FTIR spectroscopy --- pyridine adsorption --- CO adsorption --- Fischer–Tropsch synthesis --- bimetallic catalyst --- cobalt-nickel alloys --- TPR-XANES/EXAFS --- superstructures --- bicontinuous microemulsion --- oxygen evolution reaction --- metal–metal oxides --- n/a --- Co-ZSM-5 --- UV-Vis diffuse reflection spectroscopy --- Fischer-Tropsch synthesis --- metal-metal oxides
Choose an application
Catalysts are made of nanoparticles of metals, metal oxides, and other compounds that may act as active phases, support the latter, or a combination of both. The initial incentive to reduce as much as possible, up to the nano-scale, the size of the particles of active catalyst components is to maximize the surface area exposed to reactants, thus minimizing the specific cost per function and increasing the rate of conversion of feedstocks to products in relatively simple reactions. Nowadays, the interest in nanocatalyst developments has shifted to an emphasis on improving the selectivity of catalysts, allowing one to obtain desirable reactions in more complex synthetic processes. Thus, new generations of nanocatalysts should be designed at the molecular level to display well-defined structural characteristics, in terms of size, shapes, hierarchical porosity, and morphologies, as well as with controlled chemical composition. The development of efficient nanocatalysts supposes the characterization of their various surface active sites at the nanometer scale, which is focused on establishing synthesis–structure–performance relationships.
Research & information: general --- plasmonic photocatalyst --- metal nanoparticle --- N–TiO2 --- nanocomposites --- photocatalytic selective oxidation --- heterogeneous catalysis --- transition metal nitrides --- hydrogen production --- formic acid decomposition --- nickel catalyst --- calcium oxide promoter --- silica support --- Iron-based perovskites --- copper --- NO oxidation to NO2 --- NO2-assisted diesel soot oxidation --- soot oxidation under GDI exhaust conditions --- aqueous-phase reforming --- nickel --- ceria --- zirconia --- calcium --- yttrium --- methanol --- graphite --- reduced graphene oxide --- nitrogen-doped reduced graphene oxide --- exfoliation --- oxygen reduction reaction --- electrocatalysis --- UiO-66 --- iron --- cobalt --- nanocatalyst --- CO oxidation --- COProx --- methane --- oxidation catalysis --- formaldehyde --- magnetite iron oxide --- Fe3O4 --- palladium --- Pd --- silver --- Ag --- low-temperature activity --- nanocomposite --- Raman --- TG in air --- TG in hydrogen --- XRD --- electron microscopy --- EDS --- coordination polymers --- methane storage --- XRD crystallinity measurements --- mechanical shaping --- compaction --- VAM --- gas separation --- MOF pelletization --- catalysts --- dimerization --- isobutene --- olefins --- plasmonic photocatalyst --- metal nanoparticle --- N–TiO2 --- nanocomposites --- photocatalytic selective oxidation --- heterogeneous catalysis --- transition metal nitrides --- hydrogen production --- formic acid decomposition --- nickel catalyst --- calcium oxide promoter --- silica support --- Iron-based perovskites --- copper --- NO oxidation to NO2 --- NO2-assisted diesel soot oxidation --- soot oxidation under GDI exhaust conditions --- aqueous-phase reforming --- nickel --- ceria --- zirconia --- calcium --- yttrium --- methanol --- graphite --- reduced graphene oxide --- nitrogen-doped reduced graphene oxide --- exfoliation --- oxygen reduction reaction --- electrocatalysis --- UiO-66 --- iron --- cobalt --- nanocatalyst --- CO oxidation --- COProx --- methane --- oxidation catalysis --- formaldehyde --- magnetite iron oxide --- Fe3O4 --- palladium --- Pd --- silver --- Ag --- low-temperature activity --- nanocomposite --- Raman --- TG in air --- TG in hydrogen --- XRD --- electron microscopy --- EDS --- coordination polymers --- methane storage --- XRD crystallinity measurements --- mechanical shaping --- compaction --- VAM --- gas separation --- MOF pelletization --- catalysts --- dimerization --- isobutene --- olefins
Listing 1 - 10 of 15 | << page >> |
Sort by
|