Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (4)


Language

English (4)


Year
From To Submit

2020 (3)

2019 (1)

Listing 1 - 4 of 4
Sort by

Book
Multilevel Converters: Analysis, Modulation, Topologies, and Applications
Authors: ---
ISBN: 3039214829 3039214810 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is a collection of scientific papers concerning multilevel inverters examined from different points of view. Many applications are considered, such as renewable energy interface, power conditioning systems, electric drives, and chargers for electric vehicles. Different topologies have been examined in both new configurations and well-established structures, introducing novel and particular modulation strategies, and examining the effect of modulation techniques on voltage and current harmonics and the total harmonic distortion.

Keywords

total harmonic distortion (THD) --- imperialist competitive algorithm --- fault detection --- automatic current balance --- small signal modeling --- phase-shifted PWM --- voltage balance control --- parasitic switching states --- multi-terminal DC network (MTDC) --- DC-link capacitor voltage balancing --- high efficiency drive --- modular multilevel converters --- DC-link voltage balancing --- power factor correction --- selected harmonic elimination --- Continuous Wavelet Transform --- power flow analysis --- T-type inverter --- electrical drives --- modular multilevel converter (MMC) --- computational cost --- fault location --- voltage imbalance --- DC-link capacitor design --- multilevel active-clamped converter --- dc-link capacitor voltage balance --- voltage ripple --- commutation --- model predictive control (MPC) --- voltage fluctuation --- multi-motor drive --- Balance of capacitor voltage --- on-board battery charger --- single-phase three-level NPC converter --- Suppression of CMV --- redundant switching combination --- ACTPSS --- model predictive control --- three-loop --- finite control set model predictive control --- current estimation --- five-level --- fault-tolerant control --- offset voltage injection --- harmonic component --- current unmeasurable areas --- LC filter --- computational burden --- interleaved buck --- three-level converter --- IGBT short-circuit --- SVPWM --- harmonic --- DC side fault blocking --- three-phase to single-phase cascaded converter --- single shunt resistor --- buck-chopper --- power factor --- modulation techniques --- modular multilevel converters (MMC) --- permanent magnet synchronous generator --- sorting networks --- alternating current (AC) motor drive --- space vector pulse width modulation (SVPWM) --- open end winding motor --- minimum voltage injection (MVI) method --- transmission line --- shift method --- genetic algorithm --- electric vehicle --- active filter --- NPC/H Bridge --- battery energy storage system (BESS) --- digital controller --- neutral-point-clamped (NPC) inverter --- motor drive --- hybrid modulated model predictive control --- level-shifted PWM --- optimal output voltage level --- Phase Disposition PWM --- open-end winding configuration --- modular multilevel converter --- multilevel power converters --- simplified PWM strategy --- MMC-MTDC --- tolerance for battery power unbalance --- three-level neutral point clamped inverter (NPCI) --- real time simulator --- harmonic mitigation --- reverse prediction --- multilevel inverters --- field-programmable gate array --- current reconstruction method --- digital signal processors (DSP) --- three-level boost --- multilevel converter --- improved PQ algorithm --- low-harmonic DC ice-melting device --- PV-simulator --- total harmonic distortion --- voltage balancing --- Sub-module (SM) fault --- DC–DC conversion --- smart grid --- Cascaded H-bridge multilevel inverter (CHBMI) --- dynamic reactive --- field-oriented control --- capacitor voltage balancing --- energy saving --- high reliability applications --- three-phase inverter --- substation’s voltage stability --- three-level boost DC-DC converter --- power quality --- T-type converter --- voltage source inverter --- state-of-charge (SOC) balancing control --- multi-point DC control --- predictive control --- Differential Comparison Low-Voltage Detection Method (DCLVDM)


Book
Power Converters in Power Electronics
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In recent years, power converters have played an important role in power electronics technology for different applications, such as renewable energy systems, electric vehicles, pulsed power generation, and biomedical sciences. Power converters, in the realm of power electronics, are becoming essential for generating electrical power energy in various ways. This Special Issue focuses on the development of novel power converter topologies in power electronics. The topics of interest include, but are not limited to: Z-source converters; multilevel power converter topologies; switched-capacitor-based power converters; power converters for battery management systems; power converters in wireless power transfer techniques; the reliability of power conversion systems; and modulation techniques for advanced power converters.

Keywords

History of engineering & technology --- current source converter --- power decoupling --- power ripple --- computational complexity --- direct power control --- finite control set model predictive control --- PI controllers --- space vector modulation --- three-level T-type inverter --- input current ripple --- voltage multiplier --- shoot through state --- quasi-switched boost inverter --- Z-source inverter --- transformerless --- SEPIC converter --- single phase --- cascaded H-bridge inverter --- three-phase inverter --- Z-source network --- quasi-switched-boost network --- shoot-through --- quasi-z-source inverter --- grid-tied --- leakage current --- power efficiency --- counter-based --- one-comparator --- PWFM --- PWM --- PFM --- dc converter --- full bridge converter --- zero voltage operation --- multilevel inverter --- Pulse Width Modulation --- minimal number of commutations --- state machine --- Neutral Point Clamped Converter --- power converters --- EMI --- intelligent control --- classical gate driver --- interference sources --- carrier-based pulse width modulation --- offset function --- switching loss reduction --- H-bridge five-level inverter --- electromagnetic compatibility (EMC) --- switching model power supply (SMPS) --- conducted emission --- parametric modeling method --- vector fitting algorithm --- full-power testing --- high-power --- individual phase --- operation test --- static synchronous compensator (STATCOM) --- bidirectional DC/DC converter (BDC) --- dual mode operation --- current sharing --- multiplexed modulation --- low-voltage and high-current --- Lyapunov algorithm --- current sharing control --- confluence plate --- state feedback linearization --- grid-connected inverter --- LCL filter --- inductive power transfer (IPT) --- three-bridge switching --- constant current (CC) --- constant voltage (CV) --- fixed frequency --- fractional order elements --- high-frequency switching --- wireless power transmission --- active balance circuit --- bi-directional converter --- lithium battery --- series-connected battery --- fast charging --- motor drives --- full-bridge Buck inverter --- DC motor --- mathematical model --- differential flatness --- time-varying duty cycle --- circuit simulation --- experimental validation --- current source inverter --- common-mode voltage --- diode clamped multilevel inverter --- flying capacitor multilevel inverter --- cascade H bridge multilevel inverter --- total harmonic distortion --- PWM control techniques --- PSCAD/MULTISIM simulation --- model predictive control (MPC) --- neutral-point clamped (NPC) inverter --- disturbance observer --- parameter uncertainty --- stability analysis --- power factor adjustment --- matrix rectifier --- peak-current-mode (PCM) control --- boost converter --- stability --- parameter perturbation --- target period orbit tracking --- space-vector pulse-width modulation --- common-mode voltage elimination --- quasi-switched boost --- impedance network --- add-on pulse charger --- quick charge --- pulse charging --- Li-ion battery --- full bridge (FB) --- modular multilevel dc-dc converters (MMDCs) --- zero-voltage switching (ZVS) --- zero-current switching (ZCS) --- Photovoltaics --- Z-Source --- Current-fed --- Medium-Frequency --- Power-Imbalance --- harmonic --- RPWM --- selective voltage harmonic elimination --- single-phase inverter --- n/a


Book
Power Converters in Power Electronics
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In recent years, power converters have played an important role in power electronics technology for different applications, such as renewable energy systems, electric vehicles, pulsed power generation, and biomedical sciences. Power converters, in the realm of power electronics, are becoming essential for generating electrical power energy in various ways. This Special Issue focuses on the development of novel power converter topologies in power electronics. The topics of interest include, but are not limited to: Z-source converters; multilevel power converter topologies; switched-capacitor-based power converters; power converters for battery management systems; power converters in wireless power transfer techniques; the reliability of power conversion systems; and modulation techniques for advanced power converters.

Keywords

current source converter --- power decoupling --- power ripple --- computational complexity --- direct power control --- finite control set model predictive control --- PI controllers --- space vector modulation --- three-level T-type inverter --- input current ripple --- voltage multiplier --- shoot through state --- quasi-switched boost inverter --- Z-source inverter --- transformerless --- SEPIC converter --- single phase --- cascaded H-bridge inverter --- three-phase inverter --- Z-source network --- quasi-switched-boost network --- shoot-through --- quasi-z-source inverter --- grid-tied --- leakage current --- power efficiency --- counter-based --- one-comparator --- PWFM --- PWM --- PFM --- dc converter --- full bridge converter --- zero voltage operation --- multilevel inverter --- Pulse Width Modulation --- minimal number of commutations --- state machine --- Neutral Point Clamped Converter --- power converters --- EMI --- intelligent control --- classical gate driver --- interference sources --- carrier-based pulse width modulation --- offset function --- switching loss reduction --- H-bridge five-level inverter --- electromagnetic compatibility (EMC) --- switching model power supply (SMPS) --- conducted emission --- parametric modeling method --- vector fitting algorithm --- full-power testing --- high-power --- individual phase --- operation test --- static synchronous compensator (STATCOM) --- bidirectional DC/DC converter (BDC) --- dual mode operation --- current sharing --- multiplexed modulation --- low-voltage and high-current --- Lyapunov algorithm --- current sharing control --- confluence plate --- state feedback linearization --- grid-connected inverter --- LCL filter --- inductive power transfer (IPT) --- three-bridge switching --- constant current (CC) --- constant voltage (CV) --- fixed frequency --- fractional order elements --- high-frequency switching --- wireless power transmission --- active balance circuit --- bi-directional converter --- lithium battery --- series-connected battery --- fast charging --- motor drives --- full-bridge Buck inverter --- DC motor --- mathematical model --- differential flatness --- time-varying duty cycle --- circuit simulation --- experimental validation --- current source inverter --- common-mode voltage --- diode clamped multilevel inverter --- flying capacitor multilevel inverter --- cascade H bridge multilevel inverter --- total harmonic distortion --- PWM control techniques --- PSCAD/MULTISIM simulation --- model predictive control (MPC) --- neutral-point clamped (NPC) inverter --- disturbance observer --- parameter uncertainty --- stability analysis --- power factor adjustment --- matrix rectifier --- peak-current-mode (PCM) control --- boost converter --- stability --- parameter perturbation --- target period orbit tracking --- space-vector pulse-width modulation --- common-mode voltage elimination --- quasi-switched boost --- impedance network --- add-on pulse charger --- quick charge --- pulse charging --- Li-ion battery --- full bridge (FB) --- modular multilevel dc-dc converters (MMDCs) --- zero-voltage switching (ZVS) --- zero-current switching (ZCS) --- Photovoltaics --- Z-Source --- Current-fed --- Medium-Frequency --- Power-Imbalance --- harmonic --- RPWM --- selective voltage harmonic elimination --- single-phase inverter --- n/a


Book
Power Converters in Power Electronics
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In recent years, power converters have played an important role in power electronics technology for different applications, such as renewable energy systems, electric vehicles, pulsed power generation, and biomedical sciences. Power converters, in the realm of power electronics, are becoming essential for generating electrical power energy in various ways. This Special Issue focuses on the development of novel power converter topologies in power electronics. The topics of interest include, but are not limited to: Z-source converters; multilevel power converter topologies; switched-capacitor-based power converters; power converters for battery management systems; power converters in wireless power transfer techniques; the reliability of power conversion systems; and modulation techniques for advanced power converters.

Keywords

History of engineering & technology --- current source converter --- power decoupling --- power ripple --- computational complexity --- direct power control --- finite control set model predictive control --- PI controllers --- space vector modulation --- three-level T-type inverter --- input current ripple --- voltage multiplier --- shoot through state --- quasi-switched boost inverter --- Z-source inverter --- transformerless --- SEPIC converter --- single phase --- cascaded H-bridge inverter --- three-phase inverter --- Z-source network --- quasi-switched-boost network --- shoot-through --- quasi-z-source inverter --- grid-tied --- leakage current --- power efficiency --- counter-based --- one-comparator --- PWFM --- PWM --- PFM --- dc converter --- full bridge converter --- zero voltage operation --- multilevel inverter --- Pulse Width Modulation --- minimal number of commutations --- state machine --- Neutral Point Clamped Converter --- power converters --- EMI --- intelligent control --- classical gate driver --- interference sources --- carrier-based pulse width modulation --- offset function --- switching loss reduction --- H-bridge five-level inverter --- electromagnetic compatibility (EMC) --- switching model power supply (SMPS) --- conducted emission --- parametric modeling method --- vector fitting algorithm --- full-power testing --- high-power --- individual phase --- operation test --- static synchronous compensator (STATCOM) --- bidirectional DC/DC converter (BDC) --- dual mode operation --- current sharing --- multiplexed modulation --- low-voltage and high-current --- Lyapunov algorithm --- current sharing control --- confluence plate --- state feedback linearization --- grid-connected inverter --- LCL filter --- inductive power transfer (IPT) --- three-bridge switching --- constant current (CC) --- constant voltage (CV) --- fixed frequency --- fractional order elements --- high-frequency switching --- wireless power transmission --- active balance circuit --- bi-directional converter --- lithium battery --- series-connected battery --- fast charging --- motor drives --- full-bridge Buck inverter --- DC motor --- mathematical model --- differential flatness --- time-varying duty cycle --- circuit simulation --- experimental validation --- current source inverter --- common-mode voltage --- diode clamped multilevel inverter --- flying capacitor multilevel inverter --- cascade H bridge multilevel inverter --- total harmonic distortion --- PWM control techniques --- PSCAD/MULTISIM simulation --- model predictive control (MPC) --- neutral-point clamped (NPC) inverter --- disturbance observer --- parameter uncertainty --- stability analysis --- power factor adjustment --- matrix rectifier --- peak-current-mode (PCM) control --- boost converter --- stability --- parameter perturbation --- target period orbit tracking --- space-vector pulse-width modulation --- common-mode voltage elimination --- quasi-switched boost --- impedance network --- add-on pulse charger --- quick charge --- pulse charging --- Li-ion battery --- full bridge (FB) --- modular multilevel dc-dc converters (MMDCs) --- zero-voltage switching (ZVS) --- zero-current switching (ZCS) --- Photovoltaics --- Z-Source --- Current-fed --- Medium-Frequency --- Power-Imbalance --- harmonic --- RPWM --- selective voltage harmonic elimination --- single-phase inverter --- current source converter --- power decoupling --- power ripple --- computational complexity --- direct power control --- finite control set model predictive control --- PI controllers --- space vector modulation --- three-level T-type inverter --- input current ripple --- voltage multiplier --- shoot through state --- quasi-switched boost inverter --- Z-source inverter --- transformerless --- SEPIC converter --- single phase --- cascaded H-bridge inverter --- three-phase inverter --- Z-source network --- quasi-switched-boost network --- shoot-through --- quasi-z-source inverter --- grid-tied --- leakage current --- power efficiency --- counter-based --- one-comparator --- PWFM --- PWM --- PFM --- dc converter --- full bridge converter --- zero voltage operation --- multilevel inverter --- Pulse Width Modulation --- minimal number of commutations --- state machine --- Neutral Point Clamped Converter --- power converters --- EMI --- intelligent control --- classical gate driver --- interference sources --- carrier-based pulse width modulation --- offset function --- switching loss reduction --- H-bridge five-level inverter --- electromagnetic compatibility (EMC) --- switching model power supply (SMPS) --- conducted emission --- parametric modeling method --- vector fitting algorithm --- full-power testing --- high-power --- individual phase --- operation test --- static synchronous compensator (STATCOM) --- bidirectional DC/DC converter (BDC) --- dual mode operation --- current sharing --- multiplexed modulation --- low-voltage and high-current --- Lyapunov algorithm --- current sharing control --- confluence plate --- state feedback linearization --- grid-connected inverter --- LCL filter --- inductive power transfer (IPT) --- three-bridge switching --- constant current (CC) --- constant voltage (CV) --- fixed frequency --- fractional order elements --- high-frequency switching --- wireless power transmission --- active balance circuit --- bi-directional converter --- lithium battery --- series-connected battery --- fast charging --- motor drives --- full-bridge Buck inverter --- DC motor --- mathematical model --- differential flatness --- time-varying duty cycle --- circuit simulation --- experimental validation --- current source inverter --- common-mode voltage --- diode clamped multilevel inverter --- flying capacitor multilevel inverter --- cascade H bridge multilevel inverter --- total harmonic distortion --- PWM control techniques --- PSCAD/MULTISIM simulation --- model predictive control (MPC) --- neutral-point clamped (NPC) inverter --- disturbance observer --- parameter uncertainty --- stability analysis --- power factor adjustment --- matrix rectifier --- peak-current-mode (PCM) control --- boost converter --- stability --- parameter perturbation --- target period orbit tracking --- space-vector pulse-width modulation --- common-mode voltage elimination --- quasi-switched boost --- impedance network --- add-on pulse charger --- quick charge --- pulse charging --- Li-ion battery --- full bridge (FB) --- modular multilevel dc-dc converters (MMDCs) --- zero-voltage switching (ZVS) --- zero-current switching (ZCS) --- Photovoltaics --- Z-Source --- Current-fed --- Medium-Frequency --- Power-Imbalance --- harmonic --- RPWM --- selective voltage harmonic elimination --- single-phase inverter

Listing 1 - 4 of 4
Sort by