Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULiège (2)

VIVES (2)

Vlaams Parlement (2)

More...

Resource type

book (5)


Language

English (5)


Year
From To Submit

2020 (5)

Listing 1 - 5 of 5
Sort by

Book
Multivariate Approximation for solving ODE and PDE
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book presents collective works published in the recent Special Issue (SI) entitled "Multivariate Approximation for Solving ODE and PDE". These papers describe the different approaches and related objectives in the field of multivariate approximation. The articles in fact present specific contents of numerical methods for the analysis of the approximation, as well as the study of ordinary differential equations (for example oscillating with delay) or that of partial differential equations of the fractional order, but all linked by the objective to present analytical or numerical techniques for the simplification of the study of problems involving relationships that are not immediately computable, thus allowing to establish a connection between different fields of mathematical analysis and numerical analysis through different points of view and investigation. The present contents, therefore, describe the multivariate approximation theory, which is today an increasingly active research area that deals with a multitude of problems in a wide field of research. This book brings together a collection of inter-/multi-disciplinary works applied to many areas of applied mathematics in a coherent manner.


Book
Multivariate Approximation for solving ODE and PDE
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book presents collective works published in the recent Special Issue (SI) entitled "Multivariate Approximation for Solving ODE and PDE". These papers describe the different approaches and related objectives in the field of multivariate approximation. The articles in fact present specific contents of numerical methods for the analysis of the approximation, as well as the study of ordinary differential equations (for example oscillating with delay) or that of partial differential equations of the fractional order, but all linked by the objective to present analytical or numerical techniques for the simplification of the study of problems involving relationships that are not immediately computable, thus allowing to establish a connection between different fields of mathematical analysis and numerical analysis through different points of view and investigation. The present contents, therefore, describe the multivariate approximation theory, which is today an increasingly active research area that deals with a multitude of problems in a wide field of research. This book brings together a collection of inter-/multi-disciplinary works applied to many areas of applied mathematics in a coherent manner.

Keywords

Research & information: general --- Mathematics & science --- nonlinear equations --- iteration methods --- one-point methods --- order of convergence --- oscillatory solutions --- nonoscillatory solutions --- second-order --- neutral differential equations --- multiple roots --- optimal convergence --- bivariate function --- divided difference --- inverse difference --- blending difference --- continued fraction --- Thiele–Newton’s expansion --- Viscovatov-like algorithm --- symmetric duality --- non-differentiable --- (G,αf)-invexity/(G,αf)-pseudoinvexity --- (G,αf)-bonvexity/(G,αf)-pseudobonvexity --- duality --- support function --- nondifferentiable --- strictly pseudo (V,α,ρ,d)-type-I --- unified dual --- efficient solutions --- Iyengar inequality --- right and left generalized fractional derivatives --- iterated generalized fractional derivatives --- generalized fractional Taylor’s formulae --- poisson equation --- domain decomposition --- asymmetric iterative schemes --- group explicit --- parallel computation --- even-order differential equations --- neutral delay --- oscillation --- Hilbert transform --- Hadamard transform --- hypersingular integral --- Bernstein polynomials --- Boolean sum --- simultaneous approximation --- equidistant nodes --- fourth-order --- delay differential equations --- riccati transformation --- parameter estimation --- physical modelling --- oblique decomposition --- least-squares --- nonlinear equations --- iteration methods --- one-point methods --- order of convergence --- oscillatory solutions --- nonoscillatory solutions --- second-order --- neutral differential equations --- multiple roots --- optimal convergence --- bivariate function --- divided difference --- inverse difference --- blending difference --- continued fraction --- Thiele–Newton’s expansion --- Viscovatov-like algorithm --- symmetric duality --- non-differentiable --- (G,αf)-invexity/(G,αf)-pseudoinvexity --- (G,αf)-bonvexity/(G,αf)-pseudobonvexity --- duality --- support function --- nondifferentiable --- strictly pseudo (V,α,ρ,d)-type-I --- unified dual --- efficient solutions --- Iyengar inequality --- right and left generalized fractional derivatives --- iterated generalized fractional derivatives --- generalized fractional Taylor’s formulae --- poisson equation --- domain decomposition --- asymmetric iterative schemes --- group explicit --- parallel computation --- even-order differential equations --- neutral delay --- oscillation --- Hilbert transform --- Hadamard transform --- hypersingular integral --- Bernstein polynomials --- Boolean sum --- simultaneous approximation --- equidistant nodes --- fourth-order --- delay differential equations --- riccati transformation --- parameter estimation --- physical modelling --- oblique decomposition --- least-squares


Book
Advances in Differential and Difference Equations with Applications 2020
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

It is very well known that differential equations are related with the rise of physical science in the last several decades and they are used successfully for models of real-world problems in a variety of fields from several disciplines. Additionally, difference equations represent the discrete analogues of differential equations. These types of equations started to be used intensively during the last several years for their multiple applications, particularly in complex chaotic behavior. A certain class of differential and related difference equations is represented by their respective fractional forms, which have been utilized to better describe non-local phenomena appearing in all branches of science and engineering. The purpose of this book is to present some common results given by mathematicians together with physicists, engineers, as well as other scientists, for whom differential and difference equations are valuable research tools. The reported results can be used by researchers and academics working in both pure and applied differential equations.

Keywords

Research & information: general --- Mathematics & science --- dynamic equations --- time scales --- classification --- existence --- necessary and sufficient conditions --- fractional calculus --- triangular fuzzy number --- double-parametric form --- FRDTM --- fractional dynamical model of marriage --- approximate controllability --- degenerate evolution equation --- fractional Caputo derivative --- sectorial operator --- fractional symmetric Hahn integral --- fractional symmetric Hahn difference operator --- Arrhenius activation energy --- rotating disk --- Darcy–Forchheimer flow --- binary chemical reaction --- nanoparticles --- numerical solution --- fractional differential equations --- two-dimensional wavelets --- finite differences --- fractional diffusion-wave equation --- fractional derivative --- ill-posed problem --- Tikhonov regularization method --- non-linear differential equation --- cubic B-spline --- central finite difference approximations --- absolute errors --- second order differential equations --- mild solution --- non-instantaneous impulses --- Kuratowski measure of noncompactness --- Darbo fixed point --- multi-stage method --- multi-step method --- Runge–Kutta method --- backward difference formula --- stiff system --- numerical solutions --- Riemann-Liouville fractional integral --- Caputo fractional derivative --- fractional Taylor vector --- kerosene oil-based fluid --- stagnation point --- carbon nanotubes --- variable thicker surface --- thermal radiation --- differential equations --- symmetric identities --- degenerate Hermite polynomials --- complex zeros --- oscillation --- third order --- mixed neutral differential equations --- powers of stochastic Gompertz diffusion models --- powers of stochastic lognormal diffusion models --- estimation in diffusion process --- stationary distribution and ergodicity --- trend function --- application to simulated data --- n-th order linear differential equation --- two-point boundary value problem --- Green function --- linear differential equation --- exponential stability --- linear output feedback --- stabilization --- uncertain system --- nonlocal effects --- linear control system --- Hilbert space --- state feedback control --- exact controllability --- upper Bohl exponent


Book
Advances in Differential and Difference Equations with Applications 2020
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

It is very well known that differential equations are related with the rise of physical science in the last several decades and they are used successfully for models of real-world problems in a variety of fields from several disciplines. Additionally, difference equations represent the discrete analogues of differential equations. These types of equations started to be used intensively during the last several years for their multiple applications, particularly in complex chaotic behavior. A certain class of differential and related difference equations is represented by their respective fractional forms, which have been utilized to better describe non-local phenomena appearing in all branches of science and engineering. The purpose of this book is to present some common results given by mathematicians together with physicists, engineers, as well as other scientists, for whom differential and difference equations are valuable research tools. The reported results can be used by researchers and academics working in both pure and applied differential equations.

Keywords

dynamic equations --- time scales --- classification --- existence --- necessary and sufficient conditions --- fractional calculus --- triangular fuzzy number --- double-parametric form --- FRDTM --- fractional dynamical model of marriage --- approximate controllability --- degenerate evolution equation --- fractional Caputo derivative --- sectorial operator --- fractional symmetric Hahn integral --- fractional symmetric Hahn difference operator --- Arrhenius activation energy --- rotating disk --- Darcy–Forchheimer flow --- binary chemical reaction --- nanoparticles --- numerical solution --- fractional differential equations --- two-dimensional wavelets --- finite differences --- fractional diffusion-wave equation --- fractional derivative --- ill-posed problem --- Tikhonov regularization method --- non-linear differential equation --- cubic B-spline --- central finite difference approximations --- absolute errors --- second order differential equations --- mild solution --- non-instantaneous impulses --- Kuratowski measure of noncompactness --- Darbo fixed point --- multi-stage method --- multi-step method --- Runge–Kutta method --- backward difference formula --- stiff system --- numerical solutions --- Riemann-Liouville fractional integral --- Caputo fractional derivative --- fractional Taylor vector --- kerosene oil-based fluid --- stagnation point --- carbon nanotubes --- variable thicker surface --- thermal radiation --- differential equations --- symmetric identities --- degenerate Hermite polynomials --- complex zeros --- oscillation --- third order --- mixed neutral differential equations --- powers of stochastic Gompertz diffusion models --- powers of stochastic lognormal diffusion models --- estimation in diffusion process --- stationary distribution and ergodicity --- trend function --- application to simulated data --- n-th order linear differential equation --- two-point boundary value problem --- Green function --- linear differential equation --- exponential stability --- linear output feedback --- stabilization --- uncertain system --- nonlocal effects --- linear control system --- Hilbert space --- state feedback control --- exact controllability --- upper Bohl exponent


Book
Advances in Differential and Difference Equations with Applications 2020
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

It is very well known that differential equations are related with the rise of physical science in the last several decades and they are used successfully for models of real-world problems in a variety of fields from several disciplines. Additionally, difference equations represent the discrete analogues of differential equations. These types of equations started to be used intensively during the last several years for their multiple applications, particularly in complex chaotic behavior. A certain class of differential and related difference equations is represented by their respective fractional forms, which have been utilized to better describe non-local phenomena appearing in all branches of science and engineering. The purpose of this book is to present some common results given by mathematicians together with physicists, engineers, as well as other scientists, for whom differential and difference equations are valuable research tools. The reported results can be used by researchers and academics working in both pure and applied differential equations.

Keywords

Research & information: general --- Mathematics & science --- dynamic equations --- time scales --- classification --- existence --- necessary and sufficient conditions --- fractional calculus --- triangular fuzzy number --- double-parametric form --- FRDTM --- fractional dynamical model of marriage --- approximate controllability --- degenerate evolution equation --- fractional Caputo derivative --- sectorial operator --- fractional symmetric Hahn integral --- fractional symmetric Hahn difference operator --- Arrhenius activation energy --- rotating disk --- Darcy–Forchheimer flow --- binary chemical reaction --- nanoparticles --- numerical solution --- fractional differential equations --- two-dimensional wavelets --- finite differences --- fractional diffusion-wave equation --- fractional derivative --- ill-posed problem --- Tikhonov regularization method --- non-linear differential equation --- cubic B-spline --- central finite difference approximations --- absolute errors --- second order differential equations --- mild solution --- non-instantaneous impulses --- Kuratowski measure of noncompactness --- Darbo fixed point --- multi-stage method --- multi-step method --- Runge–Kutta method --- backward difference formula --- stiff system --- numerical solutions --- Riemann-Liouville fractional integral --- Caputo fractional derivative --- fractional Taylor vector --- kerosene oil-based fluid --- stagnation point --- carbon nanotubes --- variable thicker surface --- thermal radiation --- differential equations --- symmetric identities --- degenerate Hermite polynomials --- complex zeros --- oscillation --- third order --- mixed neutral differential equations --- powers of stochastic Gompertz diffusion models --- powers of stochastic lognormal diffusion models --- estimation in diffusion process --- stationary distribution and ergodicity --- trend function --- application to simulated data --- n-th order linear differential equation --- two-point boundary value problem --- Green function --- linear differential equation --- exponential stability --- linear output feedback --- stabilization --- uncertain system --- nonlocal effects --- linear control system --- Hilbert space --- state feedback control --- exact controllability --- upper Bohl exponent --- dynamic equations --- time scales --- classification --- existence --- necessary and sufficient conditions --- fractional calculus --- triangular fuzzy number --- double-parametric form --- FRDTM --- fractional dynamical model of marriage --- approximate controllability --- degenerate evolution equation --- fractional Caputo derivative --- sectorial operator --- fractional symmetric Hahn integral --- fractional symmetric Hahn difference operator --- Arrhenius activation energy --- rotating disk --- Darcy–Forchheimer flow --- binary chemical reaction --- nanoparticles --- numerical solution --- fractional differential equations --- two-dimensional wavelets --- finite differences --- fractional diffusion-wave equation --- fractional derivative --- ill-posed problem --- Tikhonov regularization method --- non-linear differential equation --- cubic B-spline --- central finite difference approximations --- absolute errors --- second order differential equations --- mild solution --- non-instantaneous impulses --- Kuratowski measure of noncompactness --- Darbo fixed point --- multi-stage method --- multi-step method --- Runge–Kutta method --- backward difference formula --- stiff system --- numerical solutions --- Riemann-Liouville fractional integral --- Caputo fractional derivative --- fractional Taylor vector --- kerosene oil-based fluid --- stagnation point --- carbon nanotubes --- variable thicker surface --- thermal radiation --- differential equations --- symmetric identities --- degenerate Hermite polynomials --- complex zeros --- oscillation --- third order --- mixed neutral differential equations --- powers of stochastic Gompertz diffusion models --- powers of stochastic lognormal diffusion models --- estimation in diffusion process --- stationary distribution and ergodicity --- trend function --- application to simulated data --- n-th order linear differential equation --- two-point boundary value problem --- Green function --- linear differential equation --- exponential stability --- linear output feedback --- stabilization --- uncertain system --- nonlocal effects --- linear control system --- Hilbert space --- state feedback control --- exact controllability --- upper Bohl exponent

Listing 1 - 5 of 5
Sort by