Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULiège (2)

VIVES (2)

Vlaams Parlement (2)

More...

Resource type

book (5)


Language

English (5)


Year
From To Submit

2021 (3)

2020 (2)

Listing 1 - 5 of 5
Sort by

Book
Radiolabeled Compounds for Diagnosis and Treatment of Cancer
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Radiopharmaceuticals are used in the diagnosis and treatment of various diseases, especially cancer. In general, radiopharmaceuticals are either salts of radionuclides or radionuclides bound to biologically active molecules, drugs, or cells. Tremendous progress has been made in discovering, developing, and commercializing numerous radiopharmaceuticals for the imaging and therapy of cancer. Significant research is ongoing in academia and the pharmaceutical industry to develop more novel radiolabeled compounds as potential radiopharmaceuticals for unmet needs. This Special Issue aims to focus on all aspects of the design, characterization, evaluation, and development of novel radiolabeled compounds for the diagnosis and treatment of cancer and the application of new radiochemistry and methodologies for the development of novel radiolabeled compounds. Outstanding contributions presented in this Special Issue will significantly add to the field of radiopharmaceuticals.

Keywords

Research & information: general --- Chemistry --- positron emission tomography (PET) --- pyrazoles --- fluorine-18 --- radionuclides --- PET probes --- imaging pharmaceuticals --- hypopharyngeal cancer --- 188Re-liposome --- repeated therapy --- NGS --- microRNA --- aprepitant --- radiopharmaceuticals --- neurokinin 1 receptor antagonist --- radionuclide chelators --- kidney uptake --- cleavable linkers --- neutral endopeptidase (NEP) --- renal brush border enzymes --- prostate-specific membrane antigen (PSMA) --- cancer imaging and therapy --- somatostatin analogs --- radiolabeling --- radionuclide therapy --- imaging --- adrenergic receptor --- positron emission tomography --- radiotracer --- cholecystokinin-2 receptor --- minigastrin --- molecular imaging --- targeted radiotherapy --- lutetium-177 --- EpCAM --- radionuclide --- SPECT --- iodine --- PIB --- breast --- cancer --- PET --- target-specific biomolecules --- immunoPET imaging pharmaceuticals --- production processes --- 124I-labeled monoclonal antibodies --- radiotracers --- AAZTA --- scandium-44 --- FAP --- SA --- DPP --- PREP --- radioiodine labeling --- radioiodination --- biomolecules --- peptides --- proteins --- monoclonal antibodies --- 123,124,125,131I-labeled molecules and biomolecules --- positron emission tomography (PET) --- pyrazoles --- fluorine-18 --- radionuclides --- PET probes --- imaging pharmaceuticals --- hypopharyngeal cancer --- 188Re-liposome --- repeated therapy --- NGS --- microRNA --- aprepitant --- radiopharmaceuticals --- neurokinin 1 receptor antagonist --- radionuclide chelators --- kidney uptake --- cleavable linkers --- neutral endopeptidase (NEP) --- renal brush border enzymes --- prostate-specific membrane antigen (PSMA) --- cancer imaging and therapy --- somatostatin analogs --- radiolabeling --- radionuclide therapy --- imaging --- adrenergic receptor --- positron emission tomography --- radiotracer --- cholecystokinin-2 receptor --- minigastrin --- molecular imaging --- targeted radiotherapy --- lutetium-177 --- EpCAM --- radionuclide --- SPECT --- iodine --- PIB --- breast --- cancer --- PET --- target-specific biomolecules --- immunoPET imaging pharmaceuticals --- production processes --- 124I-labeled monoclonal antibodies --- radiotracers --- AAZTA --- scandium-44 --- FAP --- SA --- DPP --- PREP --- radioiodine labeling --- radioiodination --- biomolecules --- peptides --- proteins --- monoclonal antibodies --- 123,124,125,131I-labeled molecules and biomolecules


Book
Radiolabeled Compounds for Diagnosis and Treatment of Cancer
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Radiopharmaceuticals are used in the diagnosis and treatment of various diseases, especially cancer. In general, radiopharmaceuticals are either salts of radionuclides or radionuclides bound to biologically active molecules, drugs, or cells. Tremendous progress has been made in discovering, developing, and commercializing numerous radiopharmaceuticals for the imaging and therapy of cancer. Significant research is ongoing in academia and the pharmaceutical industry to develop more novel radiolabeled compounds as potential radiopharmaceuticals for unmet needs. This Special Issue aims to focus on all aspects of the design, characterization, evaluation, and development of novel radiolabeled compounds for the diagnosis and treatment of cancer and the application of new radiochemistry and methodologies for the development of novel radiolabeled compounds. Outstanding contributions presented in this Special Issue will significantly add to the field of radiopharmaceuticals.


Book
Radiolabeled Compounds for Diagnosis and Treatment of Cancer
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Radiopharmaceuticals are used in the diagnosis and treatment of various diseases, especially cancer. In general, radiopharmaceuticals are either salts of radionuclides or radionuclides bound to biologically active molecules, drugs, or cells. Tremendous progress has been made in discovering, developing, and commercializing numerous radiopharmaceuticals for the imaging and therapy of cancer. Significant research is ongoing in academia and the pharmaceutical industry to develop more novel radiolabeled compounds as potential radiopharmaceuticals for unmet needs. This Special Issue aims to focus on all aspects of the design, characterization, evaluation, and development of novel radiolabeled compounds for the diagnosis and treatment of cancer and the application of new radiochemistry and methodologies for the development of novel radiolabeled compounds. Outstanding contributions presented in this Special Issue will significantly add to the field of radiopharmaceuticals.


Book
Opioids and Their Receptors : Present and Emerging Concepts in Opioid Drug Discovery
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The interest in opioids such as morphine, the prototypical opioid ligand, has been maintained through the years. The identification of endogenous opioids and their receptors (mu, delta, kappa, and nociceptin), molecular cloning, and the elucidation of the crystal structures of opioid receptors represent key milestones in opioid research. The opioid system modulates numerous pharmacological responses, with therapeutic (i.e., analgesia) and detrimental side effects (i.e., addiction). The medical use and misuse of opioids have dramatically increased, leading to the 21st century opioid crisis. This book presents recent developments in opioid drug discovery, specifically in the medicinal chemistry and pharmacology of new ligands targeting the opioid receptors as effective and safe therapeutics for human diseases. Furthermore, it draws a special attention to advancing concepts and strategies in opioid drug discovery to mitigate opioid liabilities. The diversity among the discussed topics is a testimony to the complexity of the opioid system, which results from the expression, regulation, and functional role of ligands and receptors. The array of multidisciplinary research areas illustrates the rapidly developing basic research and translational activities in opioid drug discovery. This book will serve as a useful reference while also stimulating continued research in the chemistry and pharmacology of opioids and their receptors, with the prospect of developing improved therapies for human diseases, but also improving health and quality of life in general.

Keywords

opioid receptors --- neurokinin-1 receptor --- peptide synthesis --- receptor binding studies --- functional assay --- writhing test --- tolerance --- Leu-enkephalin --- beta-arrestin --- mu opioid receptor --- delta opioid receptor --- biased signaling --- DADLE --- ischemia --- plasma stability --- morphinan --- BNTX --- δ opioid receptor antagonist --- 1H-NMR experiments --- mechanism elucidation --- peripheral antinociception --- 14-methoxycodeine-6-O-sulfate --- codeine-6-O-sulfate --- opioid peptides and peptidomimetics --- DAMGO --- DALDA --- [Dmt1]DALDA --- KGOP01 --- binding --- molecular docking --- structure-activity relationships --- β2-amino acids --- β2-Homo-amino acids --- µ-opioid receptor --- opioid peptides --- TAPP --- racemic synthesis of β2-amino acids --- peripheral µ-opioid receptors --- analgesia --- peripheral analgesic tolerance --- dysbiosis --- opioid --- bifunctional ligands --- (−)-N-phenethylnorhydromorphone analogs --- [35S]GTPgammaS assay --- forskolin-induced cAMP accumulation assays --- β-arrestin recruitment assays --- MOR and DOR agonists --- respiratory depression --- bias factor --- molecular modeling &amp --- simulation --- δ opioid receptor --- NTI derivative --- sulfonamide --- inverse agonist --- neutral antagonist --- agonist --- opioids --- mu receptor --- opioid side effects --- biased agonism --- partial agonism --- zerumbone --- chronic constriction injury (CCI) --- allodynia --- hyperalgesia --- potassium channels --- over-the-counter drugs --- misuse --- abuse --- opioid drugs --- pharmacology --- codeine --- dihydrocodeine --- loperamide --- opioid peptide --- macrocyclic tetrapeptide --- multifunctional ligands --- kappa opioid receptor --- analgesics --- opioid liabilities --- μ opioid receptor --- receptor model --- biased ligands --- dependence --- pain therapy --- neonatal opioid withdrawal syndrome --- naltrexone --- 6β-naltrexol --- buprenorphine --- G-protein bias --- arrestin recruitment --- respiration --- mitragynine --- heteromer --- internalization --- primary hippocampal culture --- lysosomes --- µ opioid receptor --- molecular dynamics --- docking --- interaction fingerprints --- biased agonists --- SR-17018 --- PZM21 --- morphine --- fentanyl --- diphenethylamines --- design and synthesis --- structure–activity relationships --- partial agonist --- biased agonist --- antagonist --- binding affinity --- selectivity --- n/a


Book
Opioids and Their Receptors : Present and Emerging Concepts in Opioid Drug Discovery
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The interest in opioids such as morphine, the prototypical opioid ligand, has been maintained through the years. The identification of endogenous opioids and their receptors (mu, delta, kappa, and nociceptin), molecular cloning, and the elucidation of the crystal structures of opioid receptors represent key milestones in opioid research. The opioid system modulates numerous pharmacological responses, with therapeutic (i.e., analgesia) and detrimental side effects (i.e., addiction). The medical use and misuse of opioids have dramatically increased, leading to the 21st century opioid crisis. This book presents recent developments in opioid drug discovery, specifically in the medicinal chemistry and pharmacology of new ligands targeting the opioid receptors as effective and safe therapeutics for human diseases. Furthermore, it draws a special attention to advancing concepts and strategies in opioid drug discovery to mitigate opioid liabilities. The diversity among the discussed topics is a testimony to the complexity of the opioid system, which results from the expression, regulation, and functional role of ligands and receptors. The array of multidisciplinary research areas illustrates the rapidly developing basic research and translational activities in opioid drug discovery. This book will serve as a useful reference while also stimulating continued research in the chemistry and pharmacology of opioids and their receptors, with the prospect of developing improved therapies for human diseases, but also improving health and quality of life in general.

Keywords

Medicine --- opioid receptors --- neurokinin-1 receptor --- peptide synthesis --- receptor binding studies --- functional assay --- writhing test --- tolerance --- Leu-enkephalin --- beta-arrestin --- mu opioid receptor --- delta opioid receptor --- biased signaling --- DADLE --- ischemia --- plasma stability --- morphinan --- BNTX --- δ opioid receptor antagonist --- 1H-NMR experiments --- mechanism elucidation --- peripheral antinociception --- 14-methoxycodeine-6-O-sulfate --- codeine-6-O-sulfate --- opioid peptides and peptidomimetics --- DAMGO --- DALDA --- [Dmt1]DALDA --- KGOP01 --- binding --- molecular docking --- structure-activity relationships --- β2-amino acids --- β2-Homo-amino acids --- µ-opioid receptor --- opioid peptides --- TAPP --- racemic synthesis of β2-amino acids --- peripheral µ-opioid receptors --- analgesia --- peripheral analgesic tolerance --- dysbiosis --- opioid --- bifunctional ligands --- (−)-N-phenethylnorhydromorphone analogs --- [35S]GTPgammaS assay --- forskolin-induced cAMP accumulation assays --- β-arrestin recruitment assays --- MOR and DOR agonists --- respiratory depression --- bias factor --- molecular modeling &amp --- simulation --- δ opioid receptor --- NTI derivative --- sulfonamide --- inverse agonist --- neutral antagonist --- agonist --- opioids --- mu receptor --- opioid side effects --- biased agonism --- partial agonism --- zerumbone --- chronic constriction injury (CCI) --- allodynia --- hyperalgesia --- potassium channels --- over-the-counter drugs --- misuse --- abuse --- opioid drugs --- pharmacology --- codeine --- dihydrocodeine --- loperamide --- opioid peptide --- macrocyclic tetrapeptide --- multifunctional ligands --- kappa opioid receptor --- analgesics --- opioid liabilities --- μ opioid receptor --- receptor model --- biased ligands --- dependence --- pain therapy --- neonatal opioid withdrawal syndrome --- naltrexone --- 6β-naltrexol --- buprenorphine --- G-protein bias --- arrestin recruitment --- respiration --- mitragynine --- heteromer --- internalization --- primary hippocampal culture --- lysosomes --- µ opioid receptor --- molecular dynamics --- docking --- interaction fingerprints --- biased agonists --- SR-17018 --- PZM21 --- morphine --- fentanyl --- diphenethylamines --- design and synthesis --- structure-activity relationships --- partial agonist --- biased agonist --- antagonist --- binding affinity --- selectivity --- opioid receptors --- neurokinin-1 receptor --- peptide synthesis --- receptor binding studies --- functional assay --- writhing test --- tolerance --- Leu-enkephalin --- beta-arrestin --- mu opioid receptor --- delta opioid receptor --- biased signaling --- DADLE --- ischemia --- plasma stability --- morphinan --- BNTX --- δ opioid receptor antagonist --- 1H-NMR experiments --- mechanism elucidation --- peripheral antinociception --- 14-methoxycodeine-6-O-sulfate --- codeine-6-O-sulfate --- opioid peptides and peptidomimetics --- DAMGO --- DALDA --- [Dmt1]DALDA --- KGOP01 --- binding --- molecular docking --- structure-activity relationships --- β2-amino acids --- β2-Homo-amino acids --- µ-opioid receptor --- opioid peptides --- TAPP --- racemic synthesis of β2-amino acids --- peripheral µ-opioid receptors --- analgesia --- peripheral analgesic tolerance --- dysbiosis --- opioid --- bifunctional ligands --- (−)-N-phenethylnorhydromorphone analogs --- [35S]GTPgammaS assay --- forskolin-induced cAMP accumulation assays --- β-arrestin recruitment assays --- MOR and DOR agonists --- respiratory depression --- bias factor --- molecular modeling &amp --- simulation --- δ opioid receptor --- NTI derivative --- sulfonamide --- inverse agonist --- neutral antagonist --- agonist --- opioids --- mu receptor --- opioid side effects --- biased agonism --- partial agonism --- zerumbone --- chronic constriction injury (CCI) --- allodynia --- hyperalgesia --- potassium channels --- over-the-counter drugs --- misuse --- abuse --- opioid drugs --- pharmacology --- codeine --- dihydrocodeine --- loperamide --- opioid peptide --- macrocyclic tetrapeptide --- multifunctional ligands --- kappa opioid receptor --- analgesics --- opioid liabilities --- μ opioid receptor --- receptor model --- biased ligands --- dependence --- pain therapy --- neonatal opioid withdrawal syndrome --- naltrexone --- 6β-naltrexol --- buprenorphine --- G-protein bias --- arrestin recruitment --- respiration --- mitragynine --- heteromer --- internalization --- primary hippocampal culture --- lysosomes --- µ opioid receptor --- molecular dynamics --- docking --- interaction fingerprints --- biased agonists --- SR-17018 --- PZM21 --- morphine --- fentanyl --- diphenethylamines --- design and synthesis --- structure-activity relationships --- partial agonist --- biased agonist --- antagonist --- binding affinity --- selectivity

Listing 1 - 5 of 5
Sort by