Narrow your search

Library

ULiège (5)

FARO (4)

KU Leuven (4)

LUCA School of Arts (4)

Odisee (4)

Thomas More Kempen (4)

Thomas More Mechelen (4)

UCLL (4)

ULB (4)

VIVES (4)

More...

Resource type

book (9)


Language

English (9)


Year
From To Submit

2021 (4)

2018 (3)

2015 (2)

Listing 1 - 9 of 9
Sort by

Book
Synaptic Assembly and Neural Circuit Development
Authors: ---
Year: 2018 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Synapses are fundamental signaling units of the central nervous system that mediate communication between individual neurons, participate in the computation of neuronal networks, and process information through long-term modification of their strength and structure. The normal function of the central nervous system critically depends on the establishment of ‘precise’ synaptic connections between neurons and specific target cells. During synaptogenesis, synapses form, mature, stabilize, and are eliminated through processes that require intimate communication between pre- and postsynaptic partners. The sequential and/or parallel processes dictate the wiring of neural circuits in a rapid and dynamic fashion. Accumulating evidence suggests that activity-dependent synaptic and circuit plasticity reflects the assembly and disassembly of diverse synapses that occur in a distinctive manner in specific neuron types. In this Research Topic, our purpose is to compile the latest developments in our understanding of molecular and cellular mechanisms underlying pre- and postsynaptic assembly, specification of synaptic adhesion pathways, presynaptic neurotransmitter release and postsynaptic receptor trafficking. In addition, non-neuronal cell processes involved in dismantling and eliminating synapses and relevant neural circuits will be covered. Clinical implications of this research topic will be considered, emphasizing the importance of these basic neuroscience research activities for translational and therapeutic applications. This includes literature describing recent methodologies for probing key issues regarding assembly/disassembly of synapses and circuits as well as primary research articles that provide critical insights into these fundamental questions in various model systems and experimental preparations.


Book
Synaptic Assembly and Neural Circuit Development
Authors: ---
Year: 2018 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Synapses are fundamental signaling units of the central nervous system that mediate communication between individual neurons, participate in the computation of neuronal networks, and process information through long-term modification of their strength and structure. The normal function of the central nervous system critically depends on the establishment of ‘precise’ synaptic connections between neurons and specific target cells. During synaptogenesis, synapses form, mature, stabilize, and are eliminated through processes that require intimate communication between pre- and postsynaptic partners. The sequential and/or parallel processes dictate the wiring of neural circuits in a rapid and dynamic fashion. Accumulating evidence suggests that activity-dependent synaptic and circuit plasticity reflects the assembly and disassembly of diverse synapses that occur in a distinctive manner in specific neuron types. In this Research Topic, our purpose is to compile the latest developments in our understanding of molecular and cellular mechanisms underlying pre- and postsynaptic assembly, specification of synaptic adhesion pathways, presynaptic neurotransmitter release and postsynaptic receptor trafficking. In addition, non-neuronal cell processes involved in dismantling and eliminating synapses and relevant neural circuits will be covered. Clinical implications of this research topic will be considered, emphasizing the importance of these basic neuroscience research activities for translational and therapeutic applications. This includes literature describing recent methodologies for probing key issues regarding assembly/disassembly of synapses and circuits as well as primary research articles that provide critical insights into these fundamental questions in various model systems and experimental preparations.


Book
Synaptic Assembly and Neural Circuit Development
Authors: ---
Year: 2018 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Synapses are fundamental signaling units of the central nervous system that mediate communication between individual neurons, participate in the computation of neuronal networks, and process information through long-term modification of their strength and structure. The normal function of the central nervous system critically depends on the establishment of ‘precise’ synaptic connections between neurons and specific target cells. During synaptogenesis, synapses form, mature, stabilize, and are eliminated through processes that require intimate communication between pre- and postsynaptic partners. The sequential and/or parallel processes dictate the wiring of neural circuits in a rapid and dynamic fashion. Accumulating evidence suggests that activity-dependent synaptic and circuit plasticity reflects the assembly and disassembly of diverse synapses that occur in a distinctive manner in specific neuron types. In this Research Topic, our purpose is to compile the latest developments in our understanding of molecular and cellular mechanisms underlying pre- and postsynaptic assembly, specification of synaptic adhesion pathways, presynaptic neurotransmitter release and postsynaptic receptor trafficking. In addition, non-neuronal cell processes involved in dismantling and eliminating synapses and relevant neural circuits will be covered. Clinical implications of this research topic will be considered, emphasizing the importance of these basic neuroscience research activities for translational and therapeutic applications. This includes literature describing recent methodologies for probing key issues regarding assembly/disassembly of synapses and circuits as well as primary research articles that provide critical insights into these fundamental questions in various model systems and experimental preparations.


Book
Mechanisms of neural circuit formation
Authors: --- --- ---
ISBN: 9782889194032 Year: 2015 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

The formation of the proper pattern of neuronal circuits during development is critical for the normal function of the vertebrate brain and for the survival of the organism. Circuit tracing studies spanning the past 100 years have revealed the beauty and exquisite intricacy of this pattern, which represents the most complex biological system known. In humans, aberrant circuit formation is a likely underlying cause of a wide variety of birth defects and neurological disorders, including autism, intellectual disability, and schizophrenia. Furthermore, future therapeutic approaches to restoring the function of damaged neural circuits will require a better understanding of the developmental constraints under which those circuits were originally assembled. For these reasons, elucidating the molecular mechanisms of neural circuit formation is a major goal of neurobiology today.Substantial progress towards this goal has been made over the past decade, and the pace of research in the field continues to accelerate with the development of novel molecular techniques and a wider variety of genetic model systems, including zebrafish and nematodes in addition to fruit flies and mice. The aim of this Research Topic is to bring together the many strands of research that shed light on the mechanisms driving neural circuit formation: studies of the differentiation of distinct neuronal subtypes; the formation of dendritic arbors and the elaboration of postsynaptic spines; the pathfinding, targeting, and branching of axons; the proper apposition of specific pre- and post-synaptic terminals; the emerging role of glial cells in facilitating synaptogenesis and synapse elimination; and the mutations behind the aberrant circuitry that leads to neurological disorders. We seek to highlight not only newly identified molecular mechanisms, but also technical advances that have allowed progress in the field to grow exponentially, including novel imaging techniques and the proliferation of large-scale “-omics” studies. We hope that this Research Topic will provide a forum for top researchers in the field to present new data, formulate novel hypotheses and models, and critically review recent progress in each step of neural circuit formation.


Book
Neurobiological circuit function and computation of the serotonergic and related systems
Authors: --- ---
ISBN: 9782889193844 Year: 2015 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Serotonin is one of the oldest neurotransmitters in evolutionary terms, and the serotonergic system is complex and multifaceted. Serotonin-producing neurons in the raphe nuclei provide serotonin innervations throughout various parts of the brain, modulating cellular excitability and network properties of targeted brain areas, and regulating mood, cognition and behavior. Dysfunctions of the serotonergic system are implicated in neuropsychiatric disorders including depression, schizophrenia, and drug abuse. Although the system has been studied for many years, an integrative account of its functions and computational principles remains elusive. This is partly attributed to the high variability and heterogeneity in terms of neuronal properties and receptor types, and its extensive connections with other brain regions. This Frontiers Research Topic e-book is a collection of recent experimental and computational work and approaches at multiple scales that provide the latest information regarding the integrated functions of the serotonergic system. The contributed papers include a variety of experimental and computational work, and human clinical studies.


Book
The self-assembling brain : how neural networks grow smarter
Author:
ISBN: 9780691215518 0691215510 Year: 2021 Publisher: Princeton, New Jersey ; Oxford, England : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

What neurobiology and artificial intelligence tell us about how the brain builds itself How does a neural network become a brain? While neurobiologists investigate how nature accomplishes this feat, computer scientists interested in artificial intelligence strive to achieve this through technology. The Self-Assembling Brain tells the stories of both fields, exploring the historical and modern approaches taken by the scientists pursuing answers to the quandary: What information is necessary to make an intelligent neural network?As Peter Robin Hiesinger argues, “the information problem” underlies both fields, motivating the questions driving forward the frontiers of research. How does genetic information unfold during the years-long process of human brain development—and is there a quicker path to creating human-level artificial intelligence? Is the biological brain just messy hardware, which scientists can improve upon by running learning algorithms on computers? Can AI bypass the evolutionary programming of “grown” networks? Through a series of fictional discussions between researchers across disciplines, complemented by in-depth seminars, Hiesinger explores these tightly linked questions, highlighting the challenges facing scientists, their different disciplinary perspectives and approaches, as well as the common ground shared by those interested in the development of biological brains and AI systems. In the end, Hiesinger contends that the information content of biological and artificial neural networks must unfold in an algorithmic process requiring time and energy. There is no genome and no blueprint that depicts the final product. The self-assembling brain knows no shortcuts.Written for readers interested in advances in neuroscience and artificial intelligence, The Self-Assembling Brain looks at how neural networks grow smarter.


Book
Novel Electrochemical Biosensors for Clinical Assays
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Biosensors, i.e., devices where biological molecules or bio(mimetic)structures are intimately coupled to a chemo/physical transducer for converting a biorecognition event into a measurable signal, have recently gained a wide (if not huge) academic and practical interest for the multitude of their applications in analysis, especially in the field of bioanalysis, medical diagnostics, and clinical assays. Indeed, thanks to their very simple use (permitting sometimes their application at home), the minimal sample pretreatment requirement, the higher selectivity, and sensitivity, biosensors are an essential tool in the detection and monitoring of a wide range of medical conditions from glycemia to Alzheimer’s disease as well as in the monitoring of drug responses. Soon, we expect that their importance and use in clinical diagnostics will expand rapidly so as to be of critical importance to public health in the coming years. This Special Issue would like to focus on recent research and development in the field of biosensors as analytical tools for clinical assays and medical diagnostics.

Keywords

Technology: general issues --- molecularly imprinted polymers (MIPs) --- surface imprinted polymers (SIPs) --- electrochemical biosensor --- biomarkers for infectious diseases --- choline biosensor --- amperometric detection --- overoxidized polypyrrole film --- phospholipase D assay --- phosphatidylcholine --- human epididymis protein 4 --- competitive electrochemical immunosensor --- WiFi portable potentiostat --- on-board calibration --- Internet of Things --- 1-methoxy-5-ethyl phenazinium ethyl sulfate --- disposable enzyme sensor --- lactate oxidase --- glucose dehydrogenase --- fructosyl peptide oxidase --- electrochemical enzyme sensor --- biomedical engineering --- surface plasmon resonance --- biosensors --- bio-functionalization optimization --- cost-effective biosensors --- lab-on-a-chip --- aptamer --- labeling --- enzyme --- zinc finger protein --- electrochemical sensor --- vascular endothelial growth factor --- breast cancer --- nanobiosensors --- biomarkers --- electrochemistry --- impedance --- immobilization --- nanomaterial --- nanoparticles (NPs) --- magnetic NPs --- self-assembled monolayers (SAMs) --- signal amplification --- optogenetics --- micro-electrode array --- in situ detection --- electrophysiology --- neural circuit recognition --- biosensor --- carbon dots --- norepinephrine --- tyrosinase --- voltammetry --- folic acid --- real samples --- analytical methods --- electrochemical tools --- choline analysis --- phosphocholine analysis --- choline oxidase --- alkaline phosphatase --- enzyme immobilization --- overoxidized polypyrrole --- electropolymerized non-conducting polymer --- dual electrode biosensor --- simultaneous determination --- flow injection analysis --- capacitive sensing --- alternating current electrokinetic effects --- miRNA sensing --- point-of-care diagnostics --- molecularly imprinted polymers (MIPs) --- surface imprinted polymers (SIPs) --- electrochemical biosensor --- biomarkers for infectious diseases --- choline biosensor --- amperometric detection --- overoxidized polypyrrole film --- phospholipase D assay --- phosphatidylcholine --- human epididymis protein 4 --- competitive electrochemical immunosensor --- WiFi portable potentiostat --- on-board calibration --- Internet of Things --- 1-methoxy-5-ethyl phenazinium ethyl sulfate --- disposable enzyme sensor --- lactate oxidase --- glucose dehydrogenase --- fructosyl peptide oxidase --- electrochemical enzyme sensor --- biomedical engineering --- surface plasmon resonance --- biosensors --- bio-functionalization optimization --- cost-effective biosensors --- lab-on-a-chip --- aptamer --- labeling --- enzyme --- zinc finger protein --- electrochemical sensor --- vascular endothelial growth factor --- breast cancer --- nanobiosensors --- biomarkers --- electrochemistry --- impedance --- immobilization --- nanomaterial --- nanoparticles (NPs) --- magnetic NPs --- self-assembled monolayers (SAMs) --- signal amplification --- optogenetics --- micro-electrode array --- in situ detection --- electrophysiology --- neural circuit recognition --- biosensor --- carbon dots --- norepinephrine --- tyrosinase --- voltammetry --- folic acid --- real samples --- analytical methods --- electrochemical tools --- choline analysis --- phosphocholine analysis --- choline oxidase --- alkaline phosphatase --- enzyme immobilization --- overoxidized polypyrrole --- electropolymerized non-conducting polymer --- dual electrode biosensor --- simultaneous determination --- flow injection analysis --- capacitive sensing --- alternating current electrokinetic effects --- miRNA sensing --- point-of-care diagnostics


Book
Novel Electrochemical Biosensors for Clinical Assays
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Biosensors, i.e., devices where biological molecules or bio(mimetic)structures are intimately coupled to a chemo/physical transducer for converting a biorecognition event into a measurable signal, have recently gained a wide (if not huge) academic and practical interest for the multitude of their applications in analysis, especially in the field of bioanalysis, medical diagnostics, and clinical assays. Indeed, thanks to their very simple use (permitting sometimes their application at home), the minimal sample pretreatment requirement, the higher selectivity, and sensitivity, biosensors are an essential tool in the detection and monitoring of a wide range of medical conditions from glycemia to Alzheimer’s disease as well as in the monitoring of drug responses. Soon, we expect that their importance and use in clinical diagnostics will expand rapidly so as to be of critical importance to public health in the coming years. This Special Issue would like to focus on recent research and development in the field of biosensors as analytical tools for clinical assays and medical diagnostics.

Keywords

Technology: general issues --- molecularly imprinted polymers (MIPs) --- surface imprinted polymers (SIPs) --- electrochemical biosensor --- biomarkers for infectious diseases --- choline biosensor --- amperometric detection --- overoxidized polypyrrole film --- phospholipase D assay --- phosphatidylcholine --- human epididymis protein 4 --- competitive electrochemical immunosensor --- WiFi portable potentiostat --- on-board calibration --- Internet of Things --- 1-methoxy-5-ethyl phenazinium ethyl sulfate --- disposable enzyme sensor --- lactate oxidase --- glucose dehydrogenase --- fructosyl peptide oxidase --- electrochemical enzyme sensor --- biomedical engineering --- surface plasmon resonance --- biosensors --- bio-functionalization optimization --- cost-effective biosensors --- lab-on-a-chip --- aptamer --- labeling --- enzyme --- zinc finger protein --- electrochemical sensor --- vascular endothelial growth factor --- breast cancer --- nanobiosensors --- biomarkers --- electrochemistry --- impedance --- immobilization --- nanomaterial --- nanoparticles (NPs) --- magnetic NPs --- self-assembled monolayers (SAMs) --- signal amplification --- optogenetics --- micro-electrode array --- in situ detection --- electrophysiology --- neural circuit recognition --- biosensor --- carbon dots --- norepinephrine --- tyrosinase --- voltammetry --- folic acid --- real samples --- analytical methods --- electrochemical tools --- choline analysis --- phosphocholine analysis --- choline oxidase --- alkaline phosphatase --- enzyme immobilization --- overoxidized polypyrrole --- electropolymerized non-conducting polymer --- dual electrode biosensor --- simultaneous determination --- flow injection analysis --- capacitive sensing --- alternating current electrokinetic effects --- miRNA sensing --- point-of-care diagnostics


Book
Novel Electrochemical Biosensors for Clinical Assays
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Biosensors, i.e., devices where biological molecules or bio(mimetic)structures are intimately coupled to a chemo/physical transducer for converting a biorecognition event into a measurable signal, have recently gained a wide (if not huge) academic and practical interest for the multitude of their applications in analysis, especially in the field of bioanalysis, medical diagnostics, and clinical assays. Indeed, thanks to their very simple use (permitting sometimes their application at home), the minimal sample pretreatment requirement, the higher selectivity, and sensitivity, biosensors are an essential tool in the detection and monitoring of a wide range of medical conditions from glycemia to Alzheimer’s disease as well as in the monitoring of drug responses. Soon, we expect that their importance and use in clinical diagnostics will expand rapidly so as to be of critical importance to public health in the coming years. This Special Issue would like to focus on recent research and development in the field of biosensors as analytical tools for clinical assays and medical diagnostics.

Keywords

molecularly imprinted polymers (MIPs) --- surface imprinted polymers (SIPs) --- electrochemical biosensor --- biomarkers for infectious diseases --- choline biosensor --- amperometric detection --- overoxidized polypyrrole film --- phospholipase D assay --- phosphatidylcholine --- human epididymis protein 4 --- competitive electrochemical immunosensor --- WiFi portable potentiostat --- on-board calibration --- Internet of Things --- 1-methoxy-5-ethyl phenazinium ethyl sulfate --- disposable enzyme sensor --- lactate oxidase --- glucose dehydrogenase --- fructosyl peptide oxidase --- electrochemical enzyme sensor --- biomedical engineering --- surface plasmon resonance --- biosensors --- bio-functionalization optimization --- cost-effective biosensors --- lab-on-a-chip --- aptamer --- labeling --- enzyme --- zinc finger protein --- electrochemical sensor --- vascular endothelial growth factor --- breast cancer --- nanobiosensors --- biomarkers --- electrochemistry --- impedance --- immobilization --- nanomaterial --- nanoparticles (NPs) --- magnetic NPs --- self-assembled monolayers (SAMs) --- signal amplification --- optogenetics --- micro-electrode array --- in situ detection --- electrophysiology --- neural circuit recognition --- biosensor --- carbon dots --- norepinephrine --- tyrosinase --- voltammetry --- folic acid --- real samples --- analytical methods --- electrochemical tools --- choline analysis --- phosphocholine analysis --- choline oxidase --- alkaline phosphatase --- enzyme immobilization --- overoxidized polypyrrole --- electropolymerized non-conducting polymer --- dual electrode biosensor --- simultaneous determination --- flow injection analysis --- capacitive sensing --- alternating current electrokinetic effects --- miRNA sensing --- point-of-care diagnostics

Listing 1 - 9 of 9
Sort by