Listing 1 - 4 of 4 |
Sort by
|
Choose an application
The application of analytical chemistry to the food sector allows the determination of the chemical composition of foods and the properties of their constituents, contributing to the definition of their nutritional and commodity value. Furthermore, it is possible to study the chemical modifications that food constituents undergo as a result of the treatments they undergo (food technology). Food analysis, therefore, allows us not only to determine the quality of a product or its nutritional value, but also to reveal adulterations and identify the presence of xenobiotic substances potentially harmful to human health. Furthermore, some foods, especially those of plant origin, contain numerous substances with beneficial effects on health. While these functional compounds can be obtained from a correct diet, they can also be extracted from food matrices for the formulation of nutraceutical products or added to foods by technological or biotechnological means for the production of functional foods. On the other hand, the enormous growth of the food industry over the last 50 years has broadened the field of application of analytical chemistry to encompass not only food but also food technology, which is fundamental for increasing the production of all types of food.
Humanities --- Social interaction --- solid-liquid extraction --- green extraction --- RSLDE --- bioactive compounds --- Naviglio extractor --- Naviglio’s principle --- Hsian-tsao --- Platostoma palustre (Blume) --- headspace solid-phase microextraction (SPME) --- volatile components --- simultaneous distillation-extraction (SDE) --- amino acid profiling --- hydrophilic interaction chromatography (HILIC) --- tandem mass spectrometry --- Triticum species flours --- flour quality characteristics --- narrow-leaved oleaster fruits --- near-infrared hyperspectral imaging --- geographical origin --- convolutional neural network --- effective wavelengths --- food colorants (synthetic, natural) --- food matrices --- instrumental analysis --- sample preparation --- mango --- volatile compounds --- frequency detection (FD) --- order-specific magnitude estimation (OSME) --- odor activity value --- sensory analysis --- lead (II) --- ELISA --- monoclonal antibody (mAb) --- isothiocyanobenzyl-EDTA (ITCBE) --- chemiluminescent enzyme immunoassay (CLEIA) --- meadow saffron --- metabolomics --- UHPLC-QTOF-mass spectrometry --- extraction methods --- antioxidants --- Pressurized liquid extraction --- soxhlet --- solvent extraction --- green analytical chemistry --- Rosemary --- poultry eggs --- spectinomycin --- lincomycin --- ASE --- GC-EI/MS/MS --- acrylamide --- kobbah --- transglutaminase --- pectin --- chitosan-nanoparticles --- coatings --- mesoporous silica nanoparticles --- grass pea --- HPLC-RP --- Curcuma longa L. --- curcuminoid stability --- multi-step extraction --- ultrasound-assisted extraction --- extraction kinetic --- functional foods --- gas chromatography --- health effects --- liquid chromatography (HPLC) --- mass spectrometry --- nutraceuticals --- phytochemicals --- solid-liquid extraction techniques
Choose an application
The application of analytical chemistry to the food sector allows the determination of the chemical composition of foods and the properties of their constituents, contributing to the definition of their nutritional and commodity value. Furthermore, it is possible to study the chemical modifications that food constituents undergo as a result of the treatments they undergo (food technology). Food analysis, therefore, allows us not only to determine the quality of a product or its nutritional value, but also to reveal adulterations and identify the presence of xenobiotic substances potentially harmful to human health. Furthermore, some foods, especially those of plant origin, contain numerous substances with beneficial effects on health. While these functional compounds can be obtained from a correct diet, they can also be extracted from food matrices for the formulation of nutraceutical products or added to foods by technological or biotechnological means for the production of functional foods. On the other hand, the enormous growth of the food industry over the last 50 years has broadened the field of application of analytical chemistry to encompass not only food but also food technology, which is fundamental for increasing the production of all types of food.
solid-liquid extraction --- green extraction --- RSLDE --- bioactive compounds --- Naviglio extractor --- Naviglio’s principle --- Hsian-tsao --- Platostoma palustre (Blume) --- headspace solid-phase microextraction (SPME) --- volatile components --- simultaneous distillation-extraction (SDE) --- amino acid profiling --- hydrophilic interaction chromatography (HILIC) --- tandem mass spectrometry --- Triticum species flours --- flour quality characteristics --- narrow-leaved oleaster fruits --- near-infrared hyperspectral imaging --- geographical origin --- convolutional neural network --- effective wavelengths --- food colorants (synthetic, natural) --- food matrices --- instrumental analysis --- sample preparation --- mango --- volatile compounds --- frequency detection (FD) --- order-specific magnitude estimation (OSME) --- odor activity value --- sensory analysis --- lead (II) --- ELISA --- monoclonal antibody (mAb) --- isothiocyanobenzyl-EDTA (ITCBE) --- chemiluminescent enzyme immunoassay (CLEIA) --- meadow saffron --- metabolomics --- UHPLC-QTOF-mass spectrometry --- extraction methods --- antioxidants --- Pressurized liquid extraction --- soxhlet --- solvent extraction --- green analytical chemistry --- Rosemary --- poultry eggs --- spectinomycin --- lincomycin --- ASE --- GC-EI/MS/MS --- acrylamide --- kobbah --- transglutaminase --- pectin --- chitosan-nanoparticles --- coatings --- mesoporous silica nanoparticles --- grass pea --- HPLC-RP --- Curcuma longa L. --- curcuminoid stability --- multi-step extraction --- ultrasound-assisted extraction --- extraction kinetic --- functional foods --- gas chromatography --- health effects --- liquid chromatography (HPLC) --- mass spectrometry --- nutraceuticals --- phytochemicals --- solid-liquid extraction techniques
Choose an application
The application of analytical chemistry to the food sector allows the determination of the chemical composition of foods and the properties of their constituents, contributing to the definition of their nutritional and commodity value. Furthermore, it is possible to study the chemical modifications that food constituents undergo as a result of the treatments they undergo (food technology). Food analysis, therefore, allows us not only to determine the quality of a product or its nutritional value, but also to reveal adulterations and identify the presence of xenobiotic substances potentially harmful to human health. Furthermore, some foods, especially those of plant origin, contain numerous substances with beneficial effects on health. While these functional compounds can be obtained from a correct diet, they can also be extracted from food matrices for the formulation of nutraceutical products or added to foods by technological or biotechnological means for the production of functional foods. On the other hand, the enormous growth of the food industry over the last 50 years has broadened the field of application of analytical chemistry to encompass not only food but also food technology, which is fundamental for increasing the production of all types of food.
Humanities --- Social interaction --- solid-liquid extraction --- green extraction --- RSLDE --- bioactive compounds --- Naviglio extractor --- Naviglio’s principle --- Hsian-tsao --- Platostoma palustre (Blume) --- headspace solid-phase microextraction (SPME) --- volatile components --- simultaneous distillation-extraction (SDE) --- amino acid profiling --- hydrophilic interaction chromatography (HILIC) --- tandem mass spectrometry --- Triticum species flours --- flour quality characteristics --- narrow-leaved oleaster fruits --- near-infrared hyperspectral imaging --- geographical origin --- convolutional neural network --- effective wavelengths --- food colorants (synthetic, natural) --- food matrices --- instrumental analysis --- sample preparation --- mango --- volatile compounds --- frequency detection (FD) --- order-specific magnitude estimation (OSME) --- odor activity value --- sensory analysis --- lead (II) --- ELISA --- monoclonal antibody (mAb) --- isothiocyanobenzyl-EDTA (ITCBE) --- chemiluminescent enzyme immunoassay (CLEIA) --- meadow saffron --- metabolomics --- UHPLC-QTOF-mass spectrometry --- extraction methods --- antioxidants --- Pressurized liquid extraction --- soxhlet --- solvent extraction --- green analytical chemistry --- Rosemary --- poultry eggs --- spectinomycin --- lincomycin --- ASE --- GC-EI/MS/MS --- acrylamide --- kobbah --- transglutaminase --- pectin --- chitosan-nanoparticles --- coatings --- mesoporous silica nanoparticles --- grass pea --- HPLC-RP --- Curcuma longa L. --- curcuminoid stability --- multi-step extraction --- ultrasound-assisted extraction --- extraction kinetic --- functional foods --- gas chromatography --- health effects --- liquid chromatography (HPLC) --- mass spectrometry --- nutraceuticals --- phytochemicals --- solid-liquid extraction techniques
Choose an application
In the last few decades, near-infrared (NIR) spectroscopy has distinguished itself as one of the most rapidly advancing spectroscopic techniques. Mainly known as an analytical tool useful for sample characterization and content quantification, NIR spectroscopy is essential in various other fields, e.g. NIR imaging techniques in biophotonics, medical applications or used for characterization of food products. Its contribution in basic science and physical chemistry should be noted as well, e.g. in exploration of the nature of molecular vibrations or intermolecular interactions. One of the current development trends involves the miniaturization and simplification of instrumentation, creating prospects for the spread of NIR spectrometers at a consumer level in the form of smartphone attachments—a breakthrough not yet accomplished by any other analytical technique. A growing diversity in the related methods and applications has led to a dispersion of these contributions among disparate scientific communities. The aim of this Special Issue was to bring together the communities that may perceive NIR spectroscopy from different perspectives. It resulted in 30 contributions presenting the latest advances in the methodologies essential in near-infrared spectroscopy in a variety of applications.
n/a --- pocket-sized spectrometer --- standard germination tests --- total hydroxycinnamic derivatives --- hyperspectral image --- quantitative analysis modeling --- tissue --- chemotherapy --- FTIR spectroscopy --- cheese --- biomeasurements --- chemometrics --- affine invariance --- rapid identification --- biodiagnosis --- bioanalytical applications --- fat --- NIRS --- pixel-wise --- paraffin-embedded --- late preterm --- maize kernel --- photonics --- hyperspectral image processing --- image processing --- colorectal cancer --- test set validation --- deep convolutional neural network --- near-infrared fluorescence --- classification --- variety discrimination --- near-infrared hyperspectral imaging --- ensemble learning --- light --- origin traceability --- Paris polyphylla var. yunnanensis --- Fourier transform mid-infrared spectroscopy --- dry matter --- Fourier transform infrared spectroscopy --- hyperspectral imaging --- FT-NIR spectroscopy --- proximal sensing --- perfusion measurements --- near-infrared spectroscopy --- stained --- carotenoids --- cellular imaging --- perturbation --- direct model transferability --- clinical classifications --- counterfeit and substandard pharmaceuticals --- hyperspectral imaging technology --- spectral imaging --- SVM --- nutritional parameters --- extra virgin olive oil --- ethanol --- osteopathy --- living cells --- object-wise --- water-mirror approach --- Chrysanthemum --- bootstrapping soft shrinkage --- FTIR --- PLS-R --- multivariate data analysis --- combination bands --- binary dragonfly algorithm --- geographical origin --- Vitis vinifera L. --- glucose --- detection --- di-(2-picolyl)amine --- non-destructive sensor --- splanchnic --- adulteration --- animal origin --- melamine --- artemether --- MicroNIR™ --- brain --- fluorescent probes --- Folin–Ciocalteu --- SCiO --- support vector machine --- anharmonic quantum mechanical calculations --- PLSR --- Zn(II) --- RMSEP --- overtones --- blackberries --- pasta/sauce blends --- FT-IR --- partial least squares calibration --- partial least squares (PLS) --- auxiliary diagnosis --- handheld near-infrared spectroscopy --- precision viticulture --- partial least squares --- seeds vitality --- freeze-damaged --- near infrared --- discriminant analysis --- corn seed --- quantum chemical calculation --- anharmonic calculation --- Trichosanthis Fructus --- moisture --- analytical spectroscopy --- Raman spectroscopy --- NIR spectroscopy --- calibration transfer --- imaging --- water --- lumefantrine --- BRAF V600E mutation --- wavelength selection --- bone cancer --- imaging visualization --- near infrared spectroscopy --- raisins --- chemometric techniques --- data fusion --- prepared slices --- Ewing sarcoma --- biomonitoring --- Rubus fructicosus --- VIS/NIR hyperspectral imaging --- combinations bands --- quantitative analysis model --- partial least square regression --- DFT calculations --- TreeBagger --- antimalarial tablets --- accelerated aging --- agriculture --- crude drugs --- spectroscopy --- rice seeds --- PLS --- isotopic substitution --- multivariate calibration --- phytoextraction --- Fourier-transform near-infrared spectroscopy --- phenolics --- deparaffinized --- near-infrared (NIR) spectroscopy --- SIMCA --- counter propagation artificial neural network --- fructose --- PLS-DA --- ultra-high performance liquid chromatography --- aquaphotomics --- support vector machine-discriminant analysis --- hier-SVM --- DNA --- NIR --- support vector machine model --- API --- principal component analysis --- Folin-Ciocalteu
Listing 1 - 4 of 4 |
Sort by
|