Listing 1 - 3 of 3 |
Sort by
|
Choose an application
Oceanic internal waves (IWs) at frequencies from local inertial (e.g., near-inertial internal waves) to buoyancy frequencies (nonlinear internal waves or internal solitary waves), sometimes including diurnal and semidiurnal tidal frequencies, play an important role in redistributing heat, momentum, materials, and energy via turbulent mixing. IWs are found ubiquitously in many seas, including East Asian marginal seas (Indonesian Seas, South China Sea, East China Sea, Yellow Sea, and East Sea or Japan Sea), significantly affecting underwater acoustics, coastal and offshore engineering, submarine navigation, biological productivity, and the local and global climate. Despite decades of study on the IWs in some regions, our understanding of the IWs in the East Asian marginal seas is still in a primitive state and the mechanisms underlying every stage (generation, propagation, evolution, and dissipation) of IWs are not always clear. This Special Issue includes papers related to all fields of both low- and high-frequency IW studies in the specified region, including remote sensing, in situ observations, theories, and numerical models.
Technology: general issues --- History of engineering & technology --- near-inertial waves --- typhoon Megi --- South China Sea --- hybrid coordinate ocean model reanalysis results --- Luzon Strait --- baroclinic tides --- stratification variability --- MITgcm --- nonlinear internal wave --- propagating speed --- propagating direction --- underway observation --- moored observation --- East China Sea --- internal solitary wave --- shipboard observation --- extreme current velocity --- wave breaking --- trapped core --- near-inertial internal waves --- nonseasonal variability --- mesoscale flow field --- relative vorticity --- Okubo-Weiss parameter --- subsurface mooring --- southwestern East Sea --- Japan Sea --- internal waves --- Hainan Island --- KRI nanggala-402 submarine wreck --- Lombok Strait --- Bali Sea --- internal solitary waves --- remote sensing images --- underwater noise --- flow noise --- vortex-induced vibration --- the South China Sea --- n/a
Choose an application
Oceanic internal waves (IWs) at frequencies from local inertial (e.g., near-inertial internal waves) to buoyancy frequencies (nonlinear internal waves or internal solitary waves), sometimes including diurnal and semidiurnal tidal frequencies, play an important role in redistributing heat, momentum, materials, and energy via turbulent mixing. IWs are found ubiquitously in many seas, including East Asian marginal seas (Indonesian Seas, South China Sea, East China Sea, Yellow Sea, and East Sea or Japan Sea), significantly affecting underwater acoustics, coastal and offshore engineering, submarine navigation, biological productivity, and the local and global climate. Despite decades of study on the IWs in some regions, our understanding of the IWs in the East Asian marginal seas is still in a primitive state and the mechanisms underlying every stage (generation, propagation, evolution, and dissipation) of IWs are not always clear. This Special Issue includes papers related to all fields of both low- and high-frequency IW studies in the specified region, including remote sensing, in situ observations, theories, and numerical models.
near-inertial waves --- typhoon Megi --- South China Sea --- hybrid coordinate ocean model reanalysis results --- Luzon Strait --- baroclinic tides --- stratification variability --- MITgcm --- nonlinear internal wave --- propagating speed --- propagating direction --- underway observation --- moored observation --- East China Sea --- internal solitary wave --- shipboard observation --- extreme current velocity --- wave breaking --- trapped core --- near-inertial internal waves --- nonseasonal variability --- mesoscale flow field --- relative vorticity --- Okubo-Weiss parameter --- subsurface mooring --- southwestern East Sea --- Japan Sea --- internal waves --- Hainan Island --- KRI nanggala-402 submarine wreck --- Lombok Strait --- Bali Sea --- internal solitary waves --- remote sensing images --- underwater noise --- flow noise --- vortex-induced vibration --- the South China Sea --- n/a
Choose an application
Oceanic internal waves (IWs) at frequencies from local inertial (e.g., near-inertial internal waves) to buoyancy frequencies (nonlinear internal waves or internal solitary waves), sometimes including diurnal and semidiurnal tidal frequencies, play an important role in redistributing heat, momentum, materials, and energy via turbulent mixing. IWs are found ubiquitously in many seas, including East Asian marginal seas (Indonesian Seas, South China Sea, East China Sea, Yellow Sea, and East Sea or Japan Sea), significantly affecting underwater acoustics, coastal and offshore engineering, submarine navigation, biological productivity, and the local and global climate. Despite decades of study on the IWs in some regions, our understanding of the IWs in the East Asian marginal seas is still in a primitive state and the mechanisms underlying every stage (generation, propagation, evolution, and dissipation) of IWs are not always clear. This Special Issue includes papers related to all fields of both low- and high-frequency IW studies in the specified region, including remote sensing, in situ observations, theories, and numerical models.
Technology: general issues --- History of engineering & technology --- near-inertial waves --- typhoon Megi --- South China Sea --- hybrid coordinate ocean model reanalysis results --- Luzon Strait --- baroclinic tides --- stratification variability --- MITgcm --- nonlinear internal wave --- propagating speed --- propagating direction --- underway observation --- moored observation --- East China Sea --- internal solitary wave --- shipboard observation --- extreme current velocity --- wave breaking --- trapped core --- near-inertial internal waves --- nonseasonal variability --- mesoscale flow field --- relative vorticity --- Okubo-Weiss parameter --- subsurface mooring --- southwestern East Sea --- Japan Sea --- internal waves --- Hainan Island --- KRI nanggala-402 submarine wreck --- Lombok Strait --- Bali Sea --- internal solitary waves --- remote sensing images --- underwater noise --- flow noise --- vortex-induced vibration --- the South China Sea --- near-inertial waves --- typhoon Megi --- South China Sea --- hybrid coordinate ocean model reanalysis results --- Luzon Strait --- baroclinic tides --- stratification variability --- MITgcm --- nonlinear internal wave --- propagating speed --- propagating direction --- underway observation --- moored observation --- East China Sea --- internal solitary wave --- shipboard observation --- extreme current velocity --- wave breaking --- trapped core --- near-inertial internal waves --- nonseasonal variability --- mesoscale flow field --- relative vorticity --- Okubo-Weiss parameter --- subsurface mooring --- southwestern East Sea --- Japan Sea --- internal waves --- Hainan Island --- KRI nanggala-402 submarine wreck --- Lombok Strait --- Bali Sea --- internal solitary waves --- remote sensing images --- underwater noise --- flow noise --- vortex-induced vibration --- the South China Sea
Listing 1 - 3 of 3 |
Sort by
|