Narrow your search

Library

KU Leuven (5)

ULiège (5)

FARO (4)

LUCA School of Arts (4)

Odisee (4)

Thomas More Kempen (4)

Thomas More Mechelen (4)

UCLL (4)

VIVES (4)

Vlaams Parlement (4)

More...

Resource type

book (12)


Language

English (12)


Year
From To Submit

2022 (8)

2020 (3)

1977 (1)

Listing 1 - 10 of 12 << page
of 2
>>
Sort by

Book
Reviews in mineralogy (formely : "Short course notes").
Authors: --- --- ---
ISBN: 0939950049 Year: 1977 Publisher: Washington : Mineralogical Society of America,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Zeolites
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book entitled Zeolites is a collection of papers recently published in the journal Crystals, focusing on zeolites as a group of hydrated aluminosilicates with unique physical and chemical properties that can have numerous and important applications. The collection opens with works related to the geological documentation of the newest deposits of natural zeolites. The second part of the book describes a variety of synthesis methods and characterizes the resulting products. Finally, some recent advances in their applications in different fields are presented at the end of the book.


Book
Zeolites
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book entitled Zeolites is a collection of papers recently published in the journal Crystals, focusing on zeolites as a group of hydrated aluminosilicates with unique physical and chemical properties that can have numerous and important applications. The collection opens with works related to the geological documentation of the newest deposits of natural zeolites. The second part of the book describes a variety of synthesis methods and characterizes the resulting products. Finally, some recent advances in their applications in different fields are presented at the end of the book.


Book
Environmental Friendly Catalysts for Energy and Pollution Control Applications
Authors: --- ---
Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Catalysts are widely used in a great variety of technologies, providing remarkable efficiency in order to address sustainable energy production, climate change challenges, and to reduce industrial emissions. In the framework of the Environmental Catalysis section promoted by the Catalysts Editorial Office, this Special Issue, entitled “Environmental Friendly Catalysts for Energy and Pollution Control Applications”, comprises novel studies representing the state-of-the-art research for efficient energy generation and industrial emission control based on new environmentally friendly catalyst materials (EFCs). In particular, in this Special Issue (SI), different kinds of catalysts are presented for catalytic solutions, including the reduction of NOx emissions (new zeolite catalyst modified with Pt), the elimination of volatile organic compounds (Co3O4@SiO2 and acidic surface transformed natural zeolite) and the removal of SO2 emissions (through adsorption processes with sodium citrate). Moreover, novel biocatalysts for bioanodes and new functional nanostructured catalysts based on metal–organic framework (MOFs) for different applications are also included. Additionally, articles compiled in this SI are also focused on the improvement of catalytic processes. Thus, selected processes based on activated carbons (modified with titanium dioxide) and optimized Fenton processes for the removal of aqueous organic pollutants or for the inactivation of bacteria are also presented.


Book
Environmental Friendly Catalysts for Energy and Pollution Control Applications
Authors: --- ---
Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Catalysts are widely used in a great variety of technologies, providing remarkable efficiency in order to address sustainable energy production, climate change challenges, and to reduce industrial emissions. In the framework of the Environmental Catalysis section promoted by the Catalysts Editorial Office, this Special Issue, entitled “Environmental Friendly Catalysts for Energy and Pollution Control Applications”, comprises novel studies representing the state-of-the-art research for efficient energy generation and industrial emission control based on new environmentally friendly catalyst materials (EFCs). In particular, in this Special Issue (SI), different kinds of catalysts are presented for catalytic solutions, including the reduction of NOx emissions (new zeolite catalyst modified with Pt), the elimination of volatile organic compounds (Co3O4@SiO2 and acidic surface transformed natural zeolite) and the removal of SO2 emissions (through adsorption processes with sodium citrate). Moreover, novel biocatalysts for bioanodes and new functional nanostructured catalysts based on metal–organic framework (MOFs) for different applications are also included. Additionally, articles compiled in this SI are also focused on the improvement of catalytic processes. Thus, selected processes based on activated carbons (modified with titanium dioxide) and optimized Fenton processes for the removal of aqueous organic pollutants or for the inactivation of bacteria are also presented.


Book
Sustainable Pavement Engineering and Road Materials
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In a similar way to many other engineering fields, the road pavement industry strongly affects the critical issues of our generation, including climate change, pollutant emission, the exploitation of natural resources and economic crises. For this reason, technicians and researchers are searching ravenously for sustainable solutions to implement in current road construction systems with the following goals: To reduce the consumption of energy and virgin materials; To run environmentally and economically friendly maintenance; To recycle waste from different industrial processes; To decrease the noise, the pollution and the heat generated by traffic, particularly in urban contexts. This Special Issue aims to collect high-quality studies that combine the aforementioned solutions, including works pertaining to: The hot, warm, and cold recycling of reclaimed asphalt pavement; Marginal materials for asphalt pavements; Innovative sustainable materials; Durability and environmental aspects; Structure performance, modeling and design; Advanced trends in rehabilitation and preservation; Surface characteristics and road safety; Management system/life cycle analysis; Urban heat island mitigation; Energy harvesting.

Keywords

porous concrete --- metakaolin --- geopolymers --- permeable pavements --- urban drainage systems --- maintenance --- reinforced asphalt pavement --- geogrid --- interlayer bonding --- static shear test --- cyclic shear test --- fatigue properties --- warm mix asphalt --- natural zeolite --- gas emissions --- energy consumption --- production costs --- bituminous mixtures --- nano-additives --- nanoclay --- carbon nanotubes --- graphene nanoplatelets --- nano-calcium oxide --- nano-titanium dioxide --- sonication --- fatigue performance --- self-healing --- hot-mix asphalt --- ageing --- cooling --- temperature segregation --- hauling --- insulated truck --- re-heating --- contact stresses --- rolling resistance --- braking --- free rolling --- load --- inflation pressure --- speed --- porosity --- permeability coefficients --- mixing ratio --- aggregate size --- compressive strength --- computed tomography (CT) image --- ex-post CBA --- road modernisation --- incidence of traffic accidents --- decision-making process --- life cycle assessment --- waste management --- circular economy --- alternative materials --- construction --- road stabilisation --- bearing capacity --- unbound base course --- cold central-plant recycled base course --- falling weight deflectometer (FWD), cold recycling in-plant --- bitumen --- aging --- rejuvenation --- reclaimed asphalt --- recycling --- coal bottom ash --- waste material --- recycle --- construction industry --- civil engineering --- bitumen selection --- performance-graded bitumen --- asphalt pavement temperatures --- temperature maps --- n/a


Book
Environmental Friendly Catalysts for Energy and Pollution Control Applications
Authors: --- ---
Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Catalysts are widely used in a great variety of technologies, providing remarkable efficiency in order to address sustainable energy production, climate change challenges, and to reduce industrial emissions. In the framework of the Environmental Catalysis section promoted by the Catalysts Editorial Office, this Special Issue, entitled “Environmental Friendly Catalysts for Energy and Pollution Control Applications”, comprises novel studies representing the state-of-the-art research for efficient energy generation and industrial emission control based on new environmentally friendly catalyst materials (EFCs). In particular, in this Special Issue (SI), different kinds of catalysts are presented for catalytic solutions, including the reduction of NOx emissions (new zeolite catalyst modified with Pt), the elimination of volatile organic compounds (Co3O4@SiO2 and acidic surface transformed natural zeolite) and the removal of SO2 emissions (through adsorption processes with sodium citrate). Moreover, novel biocatalysts for bioanodes and new functional nanostructured catalysts based on metal–organic framework (MOFs) for different applications are also included. Additionally, articles compiled in this SI are also focused on the improvement of catalytic processes. Thus, selected processes based on activated carbons (modified with titanium dioxide) and optimized Fenton processes for the removal of aqueous organic pollutants or for the inactivation of bacteria are also presented.


Book
Catalysis for the Production of Sustainable Fuels and Chemicals
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Catalysis, in the industrial production of chemicals, fuels, and materials, accounts for more than half of gross material production worldwide. Heterogeneous catalysis enables fast and selective chemical transformations, resulting in superior product yield and facilitating catalyst separation and recovery. The synthesis of novel catalysts has emerged as a hot topic for process and product development with numerous research publications and patents. Hence, development of efficient catalysts and their applications is important for sustainable energy production and use, green chemicals production and use, and economic growth. This Special Issue discusses recent developments related to catalysis for the production of sustainable fuels and chemicals and traverses many new frontiers of catalysis including synthesis, characterization, catalytic performances, reaction kinetics and modelling, as well as applications of catalysts for the production of biofuels, synthesis gas, and other green products. This covers the current state-of-the-art catalysis research applied to bioenergy, organic transformation, carbon–carbon and carbon–heteroatoms, reforming, hydrogenation, hydrodesulfurization, hydrodenitrogenation, hydrodemetalization, Fischer–Tropsch synthesis, to name a few. This book highlights new avenues in catalysis including catalyst preparation methods, analytical tools for catalyst characterization, and techno-economic assessment to enhance a chemical or biological transformation process using catalysts for a betterment of industry, academia and society.

Keywords

History of engineering & technology --- HDO --- sulfide catalyst --- NiMo/Al2O3 --- phospholipid --- fatty acid --- choline --- oxidative desulfurization --- oxidative denitrogenation --- hydrotreating --- XPS --- activated carbon --- tert-butyl hydroperoxide --- biofuel --- biodiesel --- hydrocarbon --- waste --- glycerol hydrogenolysis --- in situ hydrogen --- methanol steam reforming --- Ni/Cu/ZnO/Al2O3 catalysts --- chilean natural zeolite --- Brønsted acid sites --- bio-oil upgrade --- catalytic pyrolysis --- nitrogen-doping --- iron nitrides --- light olefins --- CO hydrogenation --- KMnO4 pretreatment --- dry reforming methane (DRM) --- methane --- carbon dioxide --- microwave --- conversion --- catalyst --- selectivity --- thermal integration --- catalyst support --- CoMo sulfided catalyst --- deoxygenation --- cracking and polymerization --- hydrogenation and dehydrogenation --- waste cooking oil --- artificial neural network --- kinetic modeling --- cobalt-praseodymium (III) oxide --- CO-rich hydrogen --- methane dry reforming --- hydrodeoxygenation --- Ni/KIT-6 --- ethyl acetate --- CO2 activation --- methanol synthesis --- atomic layer deposition --- copper nanoparticles --- zinc oxide atomic layer --- hydroprocessing --- FeCu catalysts --- jet fuel --- oleic acid --- catalytic conversion --- catalyst acidity and basicity --- product distribution --- reaction pathways --- molybdenum phosphide --- methyl palmitate --- isomerization --- carboxylic acids upgrading --- ketonization --- deuterated acetic acid --- acetone D-isotopomers distribution --- H/D exchange --- inverse deuterium kinetic isotope effect --- kinetic parameters --- activation energy --- catalytic pyrolysis of biomass --- bio-oil --- sustainable fuels and chemicals --- hydrogenolysis --- desulfurization and denitrogenation --- CO2 utilization --- pyrolysis and cracking --- syngas and hydrogen --- biomass and bio-oil --- catalysis


Book
Sustainable Pavement Engineering and Road Materials
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In a similar way to many other engineering fields, the road pavement industry strongly affects the critical issues of our generation, including climate change, pollutant emission, the exploitation of natural resources and economic crises. For this reason, technicians and researchers are searching ravenously for sustainable solutions to implement in current road construction systems with the following goals: To reduce the consumption of energy and virgin materials; To run environmentally and economically friendly maintenance; To recycle waste from different industrial processes; To decrease the noise, the pollution and the heat generated by traffic, particularly in urban contexts. This Special Issue aims to collect high-quality studies that combine the aforementioned solutions, including works pertaining to: The hot, warm, and cold recycling of reclaimed asphalt pavement; Marginal materials for asphalt pavements; Innovative sustainable materials; Durability and environmental aspects; Structure performance, modeling and design; Advanced trends in rehabilitation and preservation; Surface characteristics and road safety; Management system/life cycle analysis; Urban heat island mitigation; Energy harvesting.

Keywords

Technology: general issues --- History of engineering & technology --- porous concrete --- metakaolin --- geopolymers --- permeable pavements --- urban drainage systems --- maintenance --- reinforced asphalt pavement --- geogrid --- interlayer bonding --- static shear test --- cyclic shear test --- fatigue properties --- warm mix asphalt --- natural zeolite --- gas emissions --- energy consumption --- production costs --- bituminous mixtures --- nano-additives --- nanoclay --- carbon nanotubes --- graphene nanoplatelets --- nano-calcium oxide --- nano-titanium dioxide --- sonication --- fatigue performance --- self-healing --- hot-mix asphalt --- ageing --- cooling --- temperature segregation --- hauling --- insulated truck --- re-heating --- contact stresses --- rolling resistance --- braking --- free rolling --- load --- inflation pressure --- speed --- porosity --- permeability coefficients --- mixing ratio --- aggregate size --- compressive strength --- computed tomography (CT) image --- ex-post CBA --- road modernisation --- incidence of traffic accidents --- decision-making process --- life cycle assessment --- waste management --- circular economy --- alternative materials --- construction --- road stabilisation --- bearing capacity --- unbound base course --- cold central-plant recycled base course --- falling weight deflectometer (FWD), cold recycling in-plant --- bitumen --- aging --- rejuvenation --- reclaimed asphalt --- recycling --- coal bottom ash --- waste material --- recycle --- construction industry --- civil engineering --- bitumen selection --- performance-graded bitumen --- asphalt pavement temperatures --- temperature maps --- n/a


Book
Catalysis for the Production of Sustainable Fuels and Chemicals
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Catalysis, in the industrial production of chemicals, fuels, and materials, accounts for more than half of gross material production worldwide. Heterogeneous catalysis enables fast and selective chemical transformations, resulting in superior product yield and facilitating catalyst separation and recovery. The synthesis of novel catalysts has emerged as a hot topic for process and product development with numerous research publications and patents. Hence, development of efficient catalysts and their applications is important for sustainable energy production and use, green chemicals production and use, and economic growth. This Special Issue discusses recent developments related to catalysis for the production of sustainable fuels and chemicals and traverses many new frontiers of catalysis including synthesis, characterization, catalytic performances, reaction kinetics and modelling, as well as applications of catalysts for the production of biofuels, synthesis gas, and other green products. This covers the current state-of-the-art catalysis research applied to bioenergy, organic transformation, carbon–carbon and carbon–heteroatoms, reforming, hydrogenation, hydrodesulfurization, hydrodenitrogenation, hydrodemetalization, Fischer–Tropsch synthesis, to name a few. This book highlights new avenues in catalysis including catalyst preparation methods, analytical tools for catalyst characterization, and techno-economic assessment to enhance a chemical or biological transformation process using catalysts for a betterment of industry, academia and society.

Keywords

History of engineering & technology --- HDO --- sulfide catalyst --- NiMo/Al2O3 --- phospholipid --- fatty acid --- choline --- oxidative desulfurization --- oxidative denitrogenation --- hydrotreating --- XPS --- activated carbon --- tert-butyl hydroperoxide --- biofuel --- biodiesel --- hydrocarbon --- waste --- glycerol hydrogenolysis --- in situ hydrogen --- methanol steam reforming --- Ni/Cu/ZnO/Al2O3 catalysts --- chilean natural zeolite --- Brønsted acid sites --- bio-oil upgrade --- catalytic pyrolysis --- nitrogen-doping --- iron nitrides --- light olefins --- CO hydrogenation --- KMnO4 pretreatment --- dry reforming methane (DRM) --- methane --- carbon dioxide --- microwave --- conversion --- catalyst --- selectivity --- thermal integration --- catalyst support --- CoMo sulfided catalyst --- deoxygenation --- cracking and polymerization --- hydrogenation and dehydrogenation --- waste cooking oil --- artificial neural network --- kinetic modeling --- cobalt-praseodymium (III) oxide --- CO-rich hydrogen --- methane dry reforming --- hydrodeoxygenation --- Ni/KIT-6 --- ethyl acetate --- CO2 activation --- methanol synthesis --- atomic layer deposition --- copper nanoparticles --- zinc oxide atomic layer --- hydroprocessing --- FeCu catalysts --- jet fuel --- oleic acid --- catalytic conversion --- catalyst acidity and basicity --- product distribution --- reaction pathways --- molybdenum phosphide --- methyl palmitate --- isomerization --- carboxylic acids upgrading --- ketonization --- deuterated acetic acid --- acetone D-isotopomers distribution --- H/D exchange --- inverse deuterium kinetic isotope effect --- kinetic parameters --- activation energy --- catalytic pyrolysis of biomass --- bio-oil --- sustainable fuels and chemicals --- hydrogenolysis --- desulfurization and denitrogenation --- CO2 utilization --- pyrolysis and cracking --- syngas and hydrogen --- biomass and bio-oil --- catalysis

Listing 1 - 10 of 12 << page
of 2
>>
Sort by