Listing 1 - 10 of 16 | << page >> |
Sort by
|
Choose an application
This book focuses on both fundamental and applied research on nanogenerators. The triboelectric nanogenerator (TENG) is based on expanded Maxwell’s equations for a mechano-driven system, including the polarization density term Ps in a displacement vector owing to the electrostatic charges on medium surfaces as produced by effects such as triboelectrification. The TENGs have potential applications in blue energy, wearable devices, environmental protectioin, medical science, and security. Hybridized and coupled nanogenerators further expand the application of nanogenerators in energy stability and multi-functional sensing.
triboelectric nanogenerator --- network --- blue energy --- wave energy --- energy harvesting --- surface engineering --- surface morphology --- surface modification --- enhanced performance --- human–machine interface (HMI) --- triboelectric nanogenerator (TENG) --- artificial intelligence (AI) --- robot perception --- wearable sensor --- Internet of things (IoT) --- Beaufort scale monitoring --- near-zero power --- wake-up system --- triboelectric sensor --- ferroelectric materials --- nanogenerators --- piezoelectricity --- triboelectricity --- pyroelectricity --- bulk ferroelectric photovoltaic effect (BPVE) --- harvesting --- coupled effects --- mechanical conversion --- mechanical transmission --- triboelectric nanogenerators (TENGs) --- external mechanical system control --- regulated output --- uniform output --- stretchable electronic skin --- self-powered sensing --- human motion monitoring --- thermoplastic polyurethane fibers --- biosensors --- hybridization --- piezoelectric nanogenerator --- electromechanical conversion --- self-powered --- cell modulation --- smart textiles --- triboelectric nanogenerators --- electricity generation --- output enhancement --- air breakdown --- lubricant liquid --- mechanical lifespan
Choose an application
This reprint discusses the various applications, new materials, and evolution in the field of nanogenerators. This lays the foundation for the popularization of their broad applications in energy science, environmental protection, wearable electronics, self-powered sensors, medical science, robotics, and artificial intelligence.
Energy --- triboelectric nanogenerator (TENG) --- sodium chloride powder --- self-powered sensor --- low-cost --- human–machine interaction --- triboelectric nanogenerator --- self-powered sensing --- self-charging power unit --- remote telemetry and control --- self-powered --- triboelectric --- magnetorheological elastomer --- magnetic --- mechanical energy --- dioxygen activation --- triboelectric corona plasma --- O2− reactive species --- spin conversion --- coniform Helmholtz resonator --- acoustic energy harvesting --- organogel --- stable --- pressure sensing --- nanogenerator --- technology evolution pathway --- knowledge graph --- representation learning --- multi-source data --- nanomaterials --- AR and VR --- metal halide perovskite --- rare-earth metal --- solar cell --- light-emitting diode --- photodetector --- luminescent solar concentrators --- technology evolutionary path --- text vectorization --- theme mining --- theme river map --- triboelectric nanogenerators --- fluid dynamics sensing --- energy harvesting --- triboelectricity --- TENG --- contact-separation mode --- corona charging --- IoT --- n/a --- human-machine interaction
Choose an application
This book focuses on both fundamental and applied research on nanogenerators. The triboelectric nanogenerator (TENG) is based on expanded Maxwell’s equations for a mechano-driven system, including the polarization density term Ps in a displacement vector owing to the electrostatic charges on medium surfaces as produced by effects such as triboelectrification. The TENGs have potential applications in blue energy, wearable devices, environmental protectioin, medical science, and security. Hybridized and coupled nanogenerators further expand the application of nanogenerators in energy stability and multi-functional sensing.
Technology: general issues --- triboelectric nanogenerator --- network --- blue energy --- wave energy --- energy harvesting --- surface engineering --- surface morphology --- surface modification --- enhanced performance --- human–machine interface (HMI) --- triboelectric nanogenerator (TENG) --- artificial intelligence (AI) --- robot perception --- wearable sensor --- Internet of things (IoT) --- Beaufort scale monitoring --- near-zero power --- wake-up system --- triboelectric sensor --- ferroelectric materials --- nanogenerators --- piezoelectricity --- triboelectricity --- pyroelectricity --- bulk ferroelectric photovoltaic effect (BPVE) --- harvesting --- coupled effects --- mechanical conversion --- mechanical transmission --- triboelectric nanogenerators (TENGs) --- external mechanical system control --- regulated output --- uniform output --- stretchable electronic skin --- self-powered sensing --- human motion monitoring --- thermoplastic polyurethane fibers --- biosensors --- hybridization --- piezoelectric nanogenerator --- electromechanical conversion --- self-powered --- cell modulation --- smart textiles --- triboelectric nanogenerators --- electricity generation --- output enhancement --- air breakdown --- lubricant liquid --- mechanical lifespan
Choose an application
This book focuses on both fundamental and applied research on nanogenerators. The triboelectric nanogenerator (TENG) is based on expanded Maxwell’s equations for a mechano-driven system, including the polarization density term Ps in a displacement vector owing to the electrostatic charges on medium surfaces as produced by effects such as triboelectrification. The TENGs have potential applications in blue energy, wearable devices, environmental protectioin, medical science, and security. Hybridized and coupled nanogenerators further expand the application of nanogenerators in energy stability and multi-functional sensing.
Technology: general issues --- triboelectric nanogenerator --- network --- blue energy --- wave energy --- energy harvesting --- surface engineering --- surface morphology --- surface modification --- enhanced performance --- human–machine interface (HMI) --- triboelectric nanogenerator (TENG) --- artificial intelligence (AI) --- robot perception --- wearable sensor --- Internet of things (IoT) --- Beaufort scale monitoring --- near-zero power --- wake-up system --- triboelectric sensor --- ferroelectric materials --- nanogenerators --- piezoelectricity --- triboelectricity --- pyroelectricity --- bulk ferroelectric photovoltaic effect (BPVE) --- harvesting --- coupled effects --- mechanical conversion --- mechanical transmission --- triboelectric nanogenerators (TENGs) --- external mechanical system control --- regulated output --- uniform output --- stretchable electronic skin --- self-powered sensing --- human motion monitoring --- thermoplastic polyurethane fibers --- biosensors --- hybridization --- piezoelectric nanogenerator --- electromechanical conversion --- self-powered --- cell modulation --- smart textiles --- triboelectric nanogenerators --- electricity generation --- output enhancement --- air breakdown --- lubricant liquid --- mechanical lifespan
Choose an application
This reprint is a collection of the Special Issue "Advance in Energy Harvesters/Nanogenerators and Self-Powered Sensors" published in Nanomaterials, which includes one editorial, six novel research articles and four review articles, showcasing the very recent advances in energy-harvesting and self-powered sensing technologies. With its broad coverage of innovations in transducing/sensing mechanisms, material and structural designs, system integration and applications, as well as the timely reviews of the progress in energy harvesting and self-powered sensing technologies, this reprint could give readers an excellent overview of the challenges, opportunities, advancements and development trends of this rapidly evolving field.
Technology: general issues --- History of engineering & technology --- Energy industries & utilities --- bacteriorhodopsin --- photoelectric conversion --- bioelectronics --- nanopore --- microfluidic --- As(III) detection --- electrochemical sensing --- nanosensing --- biosensing --- energy harvesting --- triboelectric mechanism --- electrostatic mechanism --- human motion status monitoring --- IZTO/β-Ga2O3 Schottky diode --- solar-blind --- self-powered --- photodetector --- modeling --- triboelectric --- piezoelectric --- electromagnetic --- hybrid --- implantable biomedical devices --- triboelectric nanogenerator --- energy harvester --- self-powered biosensor --- nerve stimulation --- muscle stimulation --- resistance-switching --- green energy --- hybrid nanogenerators --- piezoelectric nanogenerator --- thermoelectric nanogenerators --- vibration energy harvesting --- hybrid generators --- triboelectric displacement sensors --- triboelectric acceleration sensors --- Ag2O/β-Ga2O3 --- heterojunction --- deep ultraviolet --- post-annealing --- n/a
Choose an application
As users, we require more and more reliable and longer operation of electronic devices. Most often, the efforts of scientists and engineers related to energy management, energy conversion, and energy storage are overlooked. The PowerMEMS slogan in its meaning hides the science of materials enabling the construction of modern accumulators and batteries, so important for the developing consumer electronics and electromobility; energy harvesters used wherever conventional power sources cannot be used; and finally the methods and algorithms of energy processing and management that increase the efficiency of the devices they operate. This Special Issue contains six research papers selected from those presented at the 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (Power MEMS 2019), as and representative of all papers presented during the Conference.
History of engineering & technology --- coils --- wireless power transfer --- electrically small antennas --- e-textiles --- internet of things --- wireless energy harvesting --- thermoelectrics --- GeTe --- LiI as dopant --- enhanced power factor --- suppressed thermal transport --- triboelectric nanogenerator (TENG) --- mechanical energy harvesting --- single-electrode --- tapping --- flexibility --- porous/rough PDMS --- parylene C --- hermetic packaging --- IoT --- MEMS --- microbattery --- battery --- harvester --- tracker --- wildlifetracking --- heat flux --- thermal resistance --- thermal conductance --- thermal energy harvesting --- endothermic animal --- fur --- 3D printing --- energy harvester
Choose an application
As users, we require more and more reliable and longer operation of electronic devices. Most often, the efforts of scientists and engineers related to energy management, energy conversion, and energy storage are overlooked. The PowerMEMS slogan in its meaning hides the science of materials enabling the construction of modern accumulators and batteries, so important for the developing consumer electronics and electromobility; energy harvesters used wherever conventional power sources cannot be used; and finally the methods and algorithms of energy processing and management that increase the efficiency of the devices they operate. This Special Issue contains six research papers selected from those presented at the 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (Power MEMS 2019), as and representative of all papers presented during the Conference.
coils --- wireless power transfer --- electrically small antennas --- e-textiles --- internet of things --- wireless energy harvesting --- thermoelectrics --- GeTe --- LiI as dopant --- enhanced power factor --- suppressed thermal transport --- triboelectric nanogenerator (TENG) --- mechanical energy harvesting --- single-electrode --- tapping --- flexibility --- porous/rough PDMS --- parylene C --- hermetic packaging --- IoT --- MEMS --- microbattery --- battery --- harvester --- tracker --- wildlifetracking --- heat flux --- thermal resistance --- thermal conductance --- thermal energy harvesting --- endothermic animal --- fur --- 3D printing --- energy harvester
Choose an application
As users, we require more and more reliable and longer operation of electronic devices. Most often, the efforts of scientists and engineers related to energy management, energy conversion, and energy storage are overlooked. The PowerMEMS slogan in its meaning hides the science of materials enabling the construction of modern accumulators and batteries, so important for the developing consumer electronics and electromobility; energy harvesters used wherever conventional power sources cannot be used; and finally the methods and algorithms of energy processing and management that increase the efficiency of the devices they operate. This Special Issue contains six research papers selected from those presented at the 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (Power MEMS 2019), as and representative of all papers presented during the Conference.
History of engineering & technology --- coils --- wireless power transfer --- electrically small antennas --- e-textiles --- internet of things --- wireless energy harvesting --- thermoelectrics --- GeTe --- LiI as dopant --- enhanced power factor --- suppressed thermal transport --- triboelectric nanogenerator (TENG) --- mechanical energy harvesting --- single-electrode --- tapping --- flexibility --- porous/rough PDMS --- parylene C --- hermetic packaging --- IoT --- MEMS --- microbattery --- battery --- harvester --- tracker --- wildlifetracking --- heat flux --- thermal resistance --- thermal conductance --- thermal energy harvesting --- endothermic animal --- fur --- 3D printing --- energy harvester
Choose an application
Fossil fuels leaded the 21st century industrial revolution but caused some critical problems such as exhaustion of resources and global warming. Also, current power plants require too much high cost and long time for establishment and facilities to provide electricity. Thus, developing new power production systems with environmental friendliness and low-cost is critical global needs. There are some emerging energy harvesting technologies such as thermoelectric, piezoelectric, and triboelectric nanogenerators, which have great advantages on eco-friendly low-cost materials, simple fabrication, and various operating sources. Since the introduction of various energy harvesting technologies, many novel designs and applications as power suppliers and physical sensors in the world have been demonstrated based on their unique advantages. In this Special Issue, we would like to address and share basic approaches, new designs, and industrial applications related to thermoelectric, piezoelectric, and triboelectric devices which are on-going in Korea. With this Special Issue, we aim to promote fundamental understanding and to find novel ways to achieve industrial product manufacturing for energy harvesters.
triboelectric nanogenerators --- n/a --- carbon nanotube --- mesoporous composite polymer --- organic composites --- railroad vehicle --- rolling stock --- suspension system --- remnant polarization --- water wave energy --- oxygen vacancy --- energy harvesting --- PVDF --- thermoelectric --- high dielectric constant --- advanced driver assistance technology --- thin film --- sensor --- wireless chemical sensor --- energy-harvesting metamaterial --- metamaterial sensor --- thermoelectric generator --- nanoimprinting --- superhydrophobic surface --- layer-by-layer --- high deformability --- metal oxidation --- IoT technology --- TiO2?x nanoparticle --- spray method --- piezoelectric --- graphene --- shock absorber --- ferroelectric --- frictional force --- axle bearing --- femtosecond laser --- carbon nanotubes --- mechanical energy --- polymers --- mechanical fatigue resistance --- gapless --- power factor --- nanostructures --- triboelectric generator --- hybrid energy --- microstructures --- triboelectric nanogenerator
Choose an application
Fossil fuels leaded the 21st century industrial revolution but caused some critical problems such as exhaustion of resources and global warming. Also, current power plants require too much high cost and long time for establishment and facilities to provide electricity. Thus, developing new power production systems with environmental friendliness and low-cost is critical global needs. There are some emerging energy harvesting technologies such as thermoelectric, piezoelectric, and triboelectric nanogenerators, which have great advantages on eco-friendly low-cost materials, simple fabrication, and various operating sources. Since the introduction of various energy harvesting technologies, many novel designs and applications as power suppliers and physical sensors in the world have been demonstrated based on their unique advantages. In this Special Issue, we would like to address and share basic approaches, new designs, and industrial applications related to thermoelectric, piezoelectric, and triboelectric devices which are on-going in Korea. With this Special Issue, we aim to promote fundamental understanding and to find novel ways to achieve industrial product manufacturing for energy harvesters.
triboelectric nanogenerators --- n/a --- carbon nanotube --- mesoporous composite polymer --- organic composites --- railroad vehicle --- rolling stock --- suspension system --- remnant polarization --- water wave energy --- oxygen vacancy --- energy harvesting --- PVDF --- thermoelectric --- high dielectric constant --- advanced driver assistance technology --- thin film --- sensor --- wireless chemical sensor --- energy-harvesting metamaterial --- metamaterial sensor --- thermoelectric generator --- nanoimprinting --- superhydrophobic surface --- layer-by-layer --- high deformability --- metal oxidation --- IoT technology --- TiO2?x nanoparticle --- spray method --- piezoelectric --- graphene --- shock absorber --- ferroelectric --- frictional force --- axle bearing --- femtosecond laser --- carbon nanotubes --- mechanical energy --- polymers --- mechanical fatigue resistance --- gapless --- power factor --- nanostructures --- triboelectric generator --- hybrid energy --- microstructures --- triboelectric nanogenerator
Listing 1 - 10 of 16 | << page >> |
Sort by
|