Narrow your search

Library

KU Leuven (21)

ULiège (21)

Vlaams Parlement (21)

FARO (20)

LUCA School of Arts (20)

Odisee (20)

Thomas More Kempen (20)

Thomas More Mechelen (20)

UCLL (20)

VIVES (20)

More...

Resource type

book (46)


Language

English (46)


Year
From To Submit

2022 (20)

2021 (17)

2020 (7)

2019 (1)

2018 (1)

Listing 1 - 10 of 46 << page
of 5
>>
Sort by

Book
Food Packaging Based on Nanomaterials
Authors: --- ---
ISBN: 3038975028 303897501X Year: 2018 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The use of nanotechnologies in the food-packaging area has opened up a number of possibilities derived from the inherent characteristics of nanoadditives, which can either improve relevant properties of neat polymers (such as barrier or mechanical properties) or introduce new functionalities (for active and bioactive packaging applications or even for sensing). This is an exciting and rapidly growing field of study, and very interesting developments are unfolding. Although the aim of these novel materials is to improve packaged food quality and safety, the toxicological effects derived from their potential migration from the polymer structures is also under consideration. This Special Issue compiles a review and five original papers describing novel nanocomposites with improved packaging properties, the use of nanotechnologies for smart packaging applications, and nanoparticle migration studies from novel nanocomposites.


Book
Nanocelluloses: Synthesis, Modification and Applications
Author:
ISBN: 3039287850 3039287842 Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Nanocelluloses: Synthesis, Modification and Applications is a book that provides some recent enhancements of various types of nanocellulose, mainly bacterial nanocellulose, cellulose nanocrystals and nanofibrils, and their nanocomposites. Bioactive bacterial nanocellulose finds applications in biomedical applications, https://doi.org/10.3390/nano9101352. Grafting and cross-linking bacterial nanocellulose modification emerges as a good choice for improving the potential of bacterial nanocellulose in such biomedical applications as topical wound dressings and tissue-engineering scaffolds, https://doi.org/10.3390/nano9121668. On the other hand, bacterial nanocellulose can be used as paper additive for fluorescent paper, https://doi.org/10.3390/nano9091322, and for the reinforcement of paper made from recycled fibers, https://doi.org/10.3390/nano9010058. Nanocellulose membranes are used for up-to-date carbon capture applications, https://doi.org/10.3390/nano9060877. Nanocellulose has been applied as a novel component of membranes designed to address a large spectrum of filtration problems, https://doi.org/10.3390/nano9060867. Poly(vinyl alcohol) (PVA) and cellulose nanocrystals (CNC) in random composite mats prepared using the electrospinning method are widely characterized in a large range of physical chemical aspects, https://doi.org/10.3390/nano9050805. Similarly, physical chemical aspects are emphasized for carboxylated cellulose nanofibrils produced by ammonium persulfate oxidation combined with ultrasonic and mechanical treatment, https://doi.org/10.3390/nano8090640. It is extraordinary how nanocellulose can find application in such different fields. Along the same lines, the contributions in this book come from numerous different countries, confirming the great interest of the scientific community for nanocellulose.


Book
Biocomposite Inks for 3D Printing
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Three-dimensional (3D) printing has evolved massively during the last years. The 3D printing technologies offer various advantages, including: i) tailor-made design, ii) rapid prototyping, and iii) manufacturing of complex structures. Importantly, 3D printing is currently finding its potential in tissue engineering, wound dressings, tissue models for drug testing, prosthesis, and biosensors, to name a few. One important factor is the optimized composition of inks that can facilitate the deposition of cells, fabrication of vascularized tissue and the structuring of complex constructs that are similar to functional organs. Biocomposite inks can include synthetic and natural polymers, such as poly (ε-caprolactone), polylactic acid, collagen, hyaluronic acid, alginate, nanocellulose, and may be complemented with cross-linkers to stabilize the constructs and with bioactive molecules to add functionality. Inks that contain living cells are referred to as bioinks and the process as 3D bioprinting. Some of the key aspects of the formulation of bioinks are, e.g., the tailoring of mechanical properties, biocompatibility and the rheological behavior of the ink which may affect the cell viability, proliferation, and cell differentiation.The current Special Issue emphasizes the bio-technological engineering of novel biocomposite inks for various 3D printing technologies, also considering important aspects in the production and use of bioinks.


Book
Biocomposite Inks for 3D Printing
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Three-dimensional (3D) printing has evolved massively during the last years. The 3D printing technologies offer various advantages, including: i) tailor-made design, ii) rapid prototyping, and iii) manufacturing of complex structures. Importantly, 3D printing is currently finding its potential in tissue engineering, wound dressings, tissue models for drug testing, prosthesis, and biosensors, to name a few. One important factor is the optimized composition of inks that can facilitate the deposition of cells, fabrication of vascularized tissue and the structuring of complex constructs that are similar to functional organs. Biocomposite inks can include synthetic and natural polymers, such as poly (ε-caprolactone), polylactic acid, collagen, hyaluronic acid, alginate, nanocellulose, and may be complemented with cross-linkers to stabilize the constructs and with bioactive molecules to add functionality. Inks that contain living cells are referred to as bioinks and the process as 3D bioprinting. Some of the key aspects of the formulation of bioinks are, e.g., the tailoring of mechanical properties, biocompatibility and the rheological behavior of the ink which may affect the cell viability, proliferation, and cell differentiation.The current Special Issue emphasizes the bio-technological engineering of novel biocomposite inks for various 3D printing technologies, also considering important aspects in the production and use of bioinks.


Book
Biocomposite Inks for 3D Printing
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Three-dimensional (3D) printing has evolved massively during the last years. The 3D printing technologies offer various advantages, including: i) tailor-made design, ii) rapid prototyping, and iii) manufacturing of complex structures. Importantly, 3D printing is currently finding its potential in tissue engineering, wound dressings, tissue models for drug testing, prosthesis, and biosensors, to name a few. One important factor is the optimized composition of inks that can facilitate the deposition of cells, fabrication of vascularized tissue and the structuring of complex constructs that are similar to functional organs. Biocomposite inks can include synthetic and natural polymers, such as poly (ε-caprolactone), polylactic acid, collagen, hyaluronic acid, alginate, nanocellulose, and may be complemented with cross-linkers to stabilize the constructs and with bioactive molecules to add functionality. Inks that contain living cells are referred to as bioinks and the process as 3D bioprinting. Some of the key aspects of the formulation of bioinks are, e.g., the tailoring of mechanical properties, biocompatibility and the rheological behavior of the ink which may affect the cell viability, proliferation, and cell differentiation.The current Special Issue emphasizes the bio-technological engineering of novel biocomposite inks for various 3D printing technologies, also considering important aspects in the production and use of bioinks.

Keywords

Information technology industries --- bacteria biofabrication --- 3D printing --- tissue engineering --- probiotic food --- pine sawdust --- soda ethanol pulping --- nanocellulose --- cytotoxicity --- absorption --- wound dressings --- bioprinting --- cellulose --- hydrogel --- physical cross-linking --- 3D bioprinting --- biocomposite ink --- tubular tissue --- tubular organ --- bacterial nanocellulose --- cellulose nanofibrils --- cellulose nanocrystals --- bioink --- collagen --- ECM --- extracellular matrix --- bioinks --- biomanufacturing --- biocomposite --- forest-based MFC --- fibrils --- additive manufacturing --- artificial limb --- fused deposition modeling (FDM) --- biofabrication --- hydrogels --- growth factor cocktail --- bioactive scaffold --- printability --- carboxylated agarose --- free-standing --- human nasal chondrocytes --- clinical translational --- polyhydroxyalkanoates --- scaffolds --- biomedicine --- drug delivery --- vessel stenting --- cancer --- 3D cell culture --- CNF --- cancer stemness --- bacteria biofabrication --- 3D printing --- tissue engineering --- probiotic food --- pine sawdust --- soda ethanol pulping --- nanocellulose --- cytotoxicity --- absorption --- wound dressings --- bioprinting --- cellulose --- hydrogel --- physical cross-linking --- 3D bioprinting --- biocomposite ink --- tubular tissue --- tubular organ --- bacterial nanocellulose --- cellulose nanofibrils --- cellulose nanocrystals --- bioink --- collagen --- ECM --- extracellular matrix --- bioinks --- biomanufacturing --- biocomposite --- forest-based MFC --- fibrils --- additive manufacturing --- artificial limb --- fused deposition modeling (FDM) --- biofabrication --- hydrogels --- growth factor cocktail --- bioactive scaffold --- printability --- carboxylated agarose --- free-standing --- human nasal chondrocytes --- clinical translational --- polyhydroxyalkanoates --- scaffolds --- biomedicine --- drug delivery --- vessel stenting --- cancer --- 3D cell culture --- CNF --- cancer stemness


Book
Application of Nanoparticles for Oil Recovery
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The oil industry has, in the last decade, seen successful applications of nanotechnology in completion systems, completion fluids, drilling fluids, and in improvements of well constructions, equipment, and procedures. However, very few full field applications of nanoparticles as an additive to injection fluids for enhanced oil recovery (EOR) have been reported. Many types of chemical enhanced oil recovery methods have been used in fields all over the world for many decades and have resulted in higher recovery, but the projects have very often not been economic. Therefore, the oil industry is searching for a more efficient enhanced oil recovery method. Based on the success of nanotechnology in various areas of the oil industry, nanoparticles have been extensively studied as an additive in injection fluids for EOR. This book includes a selection of research articles on the use of nanoparticles for EOR application. The articles are discussing nanoparticles as additive in waterflooding and surfactant flooding, stability and wettability alteration ability of nanoparticles and nanoparticle stabilized foam for CO2-EOR. The book also includes articles on nanoparticles as an additive in biopolymer flooding and studies on the use of nanocellulose as a method to increase the viscosity of injection water. Mathematical models of the injection of nanoparticle-polymer solutions are also presented.

Keywords

Technology: general issues --- nanomaterials --- pore throat size distribution --- mercury injection capillary pressure --- interfacial tension --- contact angle --- enhanced oil recovery --- surfactant --- nanoparticle --- chemical flooding --- nanocellulose --- cellulose nanocrystals --- TEMPO-oxidized cellulose nanofibrils --- microfluidics --- biopolymer --- silica nanoparticles --- nanoparticle stability --- reservoir condition --- reservoir rock --- crude oil --- nanoparticle agglomeration --- polymer flooding --- formation rheological characteristics --- polymer concentration --- recovery factor --- mathematical model --- nanoparticles --- foam --- CO2 EOR --- CO2 mobility control --- nanotechnology for EOR --- nanoparticles stability --- polymer-coated nanoparticles --- core flood --- EOR --- wettability alteration --- nanoparticle-stabilized emulsion and flow diversion --- nanomaterials --- pore throat size distribution --- mercury injection capillary pressure --- interfacial tension --- contact angle --- enhanced oil recovery --- surfactant --- nanoparticle --- chemical flooding --- nanocellulose --- cellulose nanocrystals --- TEMPO-oxidized cellulose nanofibrils --- microfluidics --- biopolymer --- silica nanoparticles --- nanoparticle stability --- reservoir condition --- reservoir rock --- crude oil --- nanoparticle agglomeration --- polymer flooding --- formation rheological characteristics --- polymer concentration --- recovery factor --- mathematical model --- nanoparticles --- foam --- CO2 EOR --- CO2 mobility control --- nanotechnology for EOR --- nanoparticles stability --- polymer-coated nanoparticles --- core flood --- EOR --- wettability alteration --- nanoparticle-stabilized emulsion and flow diversion


Book
Advanced Biopolymer-Based Nanocomposites and Hybrid Materials

Loading...
Export citation

Choose an application

Bookmark

Abstract

The exploitation of naturally occurring polymers to engineer advanced nanocomposites and hybrid materials is the focus of increasing scientific activity, explained by growing environmental concerns and interest in the peculiar features and multiple functionalities of these macromolecules. Natural polymers, such as polysaccharides and proteins, present a remarkable potential for the design of all kinds of materials for application in a multitude of domains. This Special Issue collected the work of scientists on the current developments in the field of multifunctional biopolymer-based nanocomposites and hybrid materials with a particular emphasis on their production methodologies, properties, and prominent applications. Thus, materials related to bio-based nanocomposites and hybrid materials manufactured with different partners, namely natural polymers, bioactive compounds, and inorganic nanoparticles, are reported in the Special Issue Advanced Biopolymer-Based Nanocomposites and Hybrid Materials.

Keywords

Research & information: general --- Technology: general issues --- biopolymer --- silk fibroin --- aerogel --- fiber --- nanomaterials --- nanoparticles --- noble metals --- gold --- platinum --- palladium --- bacterial nanocellulose --- poly(2-methacryloyloxyethyl phosphorylcholine) --- zwitterionic nanocomposites --- dye removal --- water remediation --- antibacterial activity --- lignin --- polylactic acid (PLA) --- 3D printing --- biocomposites --- biopolymers --- bioactive surfaces --- biomaterials --- hybrid organometallic polymers --- laser two-photon polymerisation --- tissue engineering --- gold nanoparticles --- fucoidan --- microwave irradiation --- antitumoral activity --- darkfield imaging --- hyaluronic acid --- Tyrosine --- viscoelastic modulus of HS-IPN hydrogels --- hBMSC differentiations --- nucleus pulposus --- biopolymer --- silk fibroin --- aerogel --- fiber --- nanomaterials --- nanoparticles --- noble metals --- gold --- platinum --- palladium --- bacterial nanocellulose --- poly(2-methacryloyloxyethyl phosphorylcholine) --- zwitterionic nanocomposites --- dye removal --- water remediation --- antibacterial activity --- lignin --- polylactic acid (PLA) --- 3D printing --- biocomposites --- biopolymers --- bioactive surfaces --- biomaterials --- hybrid organometallic polymers --- laser two-photon polymerisation --- tissue engineering --- gold nanoparticles --- fucoidan --- microwave irradiation --- antitumoral activity --- darkfield imaging --- hyaluronic acid --- Tyrosine --- viscoelastic modulus of HS-IPN hydrogels --- hBMSC differentiations --- nucleus pulposus


Book
Application of Nanoparticles for Oil Recovery
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The oil industry has, in the last decade, seen successful applications of nanotechnology in completion systems, completion fluids, drilling fluids, and in improvements of well constructions, equipment, and procedures. However, very few full field applications of nanoparticles as an additive to injection fluids for enhanced oil recovery (EOR) have been reported. Many types of chemical enhanced oil recovery methods have been used in fields all over the world for many decades and have resulted in higher recovery, but the projects have very often not been economic. Therefore, the oil industry is searching for a more efficient enhanced oil recovery method. Based on the success of nanotechnology in various areas of the oil industry, nanoparticles have been extensively studied as an additive in injection fluids for EOR. This book includes a selection of research articles on the use of nanoparticles for EOR application. The articles are discussing nanoparticles as additive in waterflooding and surfactant flooding, stability and wettability alteration ability of nanoparticles and nanoparticle stabilized foam for CO2-EOR. The book also includes articles on nanoparticles as an additive in biopolymer flooding and studies on the use of nanocellulose as a method to increase the viscosity of injection water. Mathematical models of the injection of nanoparticle-polymer solutions are also presented.


Book
Advanced Biopolymer-Based Nanocomposites and Hybrid Materials

Loading...
Export citation

Choose an application

Bookmark

Abstract

The exploitation of naturally occurring polymers to engineer advanced nanocomposites and hybrid materials is the focus of increasing scientific activity, explained by growing environmental concerns and interest in the peculiar features and multiple functionalities of these macromolecules. Natural polymers, such as polysaccharides and proteins, present a remarkable potential for the design of all kinds of materials for application in a multitude of domains. This Special Issue collected the work of scientists on the current developments in the field of multifunctional biopolymer-based nanocomposites and hybrid materials with a particular emphasis on their production methodologies, properties, and prominent applications. Thus, materials related to bio-based nanocomposites and hybrid materials manufactured with different partners, namely natural polymers, bioactive compounds, and inorganic nanoparticles, are reported in the Special Issue Advanced Biopolymer-Based Nanocomposites and Hybrid Materials.


Book
Application of Nanoparticles for Oil Recovery
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The oil industry has, in the last decade, seen successful applications of nanotechnology in completion systems, completion fluids, drilling fluids, and in improvements of well constructions, equipment, and procedures. However, very few full field applications of nanoparticles as an additive to injection fluids for enhanced oil recovery (EOR) have been reported. Many types of chemical enhanced oil recovery methods have been used in fields all over the world for many decades and have resulted in higher recovery, but the projects have very often not been economic. Therefore, the oil industry is searching for a more efficient enhanced oil recovery method. Based on the success of nanotechnology in various areas of the oil industry, nanoparticles have been extensively studied as an additive in injection fluids for EOR. This book includes a selection of research articles on the use of nanoparticles for EOR application. The articles are discussing nanoparticles as additive in waterflooding and surfactant flooding, stability and wettability alteration ability of nanoparticles and nanoparticle stabilized foam for CO2-EOR. The book also includes articles on nanoparticles as an additive in biopolymer flooding and studies on the use of nanocellulose as a method to increase the viscosity of injection water. Mathematical models of the injection of nanoparticle-polymer solutions are also presented.

Listing 1 - 10 of 46 << page
of 5
>>
Sort by