Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (4)


Language

English (4)


Year
From To Submit

2022 (3)

2020 (1)

Listing 1 - 4 of 4
Sort by

Book
Sustainable Pavement Engineering and Road Materials
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In a similar way to many other engineering fields, the road pavement industry strongly affects the critical issues of our generation, including climate change, pollutant emission, the exploitation of natural resources and economic crises. For this reason, technicians and researchers are searching ravenously for sustainable solutions to implement in current road construction systems with the following goals: To reduce the consumption of energy and virgin materials; To run environmentally and economically friendly maintenance; To recycle waste from different industrial processes; To decrease the noise, the pollution and the heat generated by traffic, particularly in urban contexts. This Special Issue aims to collect high-quality studies that combine the aforementioned solutions, including works pertaining to: The hot, warm, and cold recycling of reclaimed asphalt pavement; Marginal materials for asphalt pavements; Innovative sustainable materials; Durability and environmental aspects; Structure performance, modeling and design; Advanced trends in rehabilitation and preservation; Surface characteristics and road safety; Management system/life cycle analysis; Urban heat island mitigation; Energy harvesting.

Keywords

porous concrete --- metakaolin --- geopolymers --- permeable pavements --- urban drainage systems --- maintenance --- reinforced asphalt pavement --- geogrid --- interlayer bonding --- static shear test --- cyclic shear test --- fatigue properties --- warm mix asphalt --- natural zeolite --- gas emissions --- energy consumption --- production costs --- bituminous mixtures --- nano-additives --- nanoclay --- carbon nanotubes --- graphene nanoplatelets --- nano-calcium oxide --- nano-titanium dioxide --- sonication --- fatigue performance --- self-healing --- hot-mix asphalt --- ageing --- cooling --- temperature segregation --- hauling --- insulated truck --- re-heating --- contact stresses --- rolling resistance --- braking --- free rolling --- load --- inflation pressure --- speed --- porosity --- permeability coefficients --- mixing ratio --- aggregate size --- compressive strength --- computed tomography (CT) image --- ex-post CBA --- road modernisation --- incidence of traffic accidents --- decision-making process --- life cycle assessment --- waste management --- circular economy --- alternative materials --- construction --- road stabilisation --- bearing capacity --- unbound base course --- cold central-plant recycled base course --- falling weight deflectometer (FWD), cold recycling in-plant --- bitumen --- aging --- rejuvenation --- reclaimed asphalt --- recycling --- coal bottom ash --- waste material --- recycle --- construction industry --- civil engineering --- bitumen selection --- performance-graded bitumen --- asphalt pavement temperatures --- temperature maps --- n/a


Book
Sustainable Pavement Engineering and Road Materials
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In a similar way to many other engineering fields, the road pavement industry strongly affects the critical issues of our generation, including climate change, pollutant emission, the exploitation of natural resources and economic crises. For this reason, technicians and researchers are searching ravenously for sustainable solutions to implement in current road construction systems with the following goals: To reduce the consumption of energy and virgin materials; To run environmentally and economically friendly maintenance; To recycle waste from different industrial processes; To decrease the noise, the pollution and the heat generated by traffic, particularly in urban contexts. This Special Issue aims to collect high-quality studies that combine the aforementioned solutions, including works pertaining to: The hot, warm, and cold recycling of reclaimed asphalt pavement; Marginal materials for asphalt pavements; Innovative sustainable materials; Durability and environmental aspects; Structure performance, modeling and design; Advanced trends in rehabilitation and preservation; Surface characteristics and road safety; Management system/life cycle analysis; Urban heat island mitigation; Energy harvesting.

Keywords

Technology: general issues --- History of engineering & technology --- porous concrete --- metakaolin --- geopolymers --- permeable pavements --- urban drainage systems --- maintenance --- reinforced asphalt pavement --- geogrid --- interlayer bonding --- static shear test --- cyclic shear test --- fatigue properties --- warm mix asphalt --- natural zeolite --- gas emissions --- energy consumption --- production costs --- bituminous mixtures --- nano-additives --- nanoclay --- carbon nanotubes --- graphene nanoplatelets --- nano-calcium oxide --- nano-titanium dioxide --- sonication --- fatigue performance --- self-healing --- hot-mix asphalt --- ageing --- cooling --- temperature segregation --- hauling --- insulated truck --- re-heating --- contact stresses --- rolling resistance --- braking --- free rolling --- load --- inflation pressure --- speed --- porosity --- permeability coefficients --- mixing ratio --- aggregate size --- compressive strength --- computed tomography (CT) image --- ex-post CBA --- road modernisation --- incidence of traffic accidents --- decision-making process --- life cycle assessment --- waste management --- circular economy --- alternative materials --- construction --- road stabilisation --- bearing capacity --- unbound base course --- cold central-plant recycled base course --- falling weight deflectometer (FWD), cold recycling in-plant --- bitumen --- aging --- rejuvenation --- reclaimed asphalt --- recycling --- coal bottom ash --- waste material --- recycle --- construction industry --- civil engineering --- bitumen selection --- performance-graded bitumen --- asphalt pavement temperatures --- temperature maps --- porous concrete --- metakaolin --- geopolymers --- permeable pavements --- urban drainage systems --- maintenance --- reinforced asphalt pavement --- geogrid --- interlayer bonding --- static shear test --- cyclic shear test --- fatigue properties --- warm mix asphalt --- natural zeolite --- gas emissions --- energy consumption --- production costs --- bituminous mixtures --- nano-additives --- nanoclay --- carbon nanotubes --- graphene nanoplatelets --- nano-calcium oxide --- nano-titanium dioxide --- sonication --- fatigue performance --- self-healing --- hot-mix asphalt --- ageing --- cooling --- temperature segregation --- hauling --- insulated truck --- re-heating --- contact stresses --- rolling resistance --- braking --- free rolling --- load --- inflation pressure --- speed --- porosity --- permeability coefficients --- mixing ratio --- aggregate size --- compressive strength --- computed tomography (CT) image --- ex-post CBA --- road modernisation --- incidence of traffic accidents --- decision-making process --- life cycle assessment --- waste management --- circular economy --- alternative materials --- construction --- road stabilisation --- bearing capacity --- unbound base course --- cold central-plant recycled base course --- falling weight deflectometer (FWD), cold recycling in-plant --- bitumen --- aging --- rejuvenation --- reclaimed asphalt --- recycling --- coal bottom ash --- waste material --- recycle --- construction industry --- civil engineering --- bitumen selection --- performance-graded bitumen --- asphalt pavement temperatures --- temperature maps


Book
Biomass Processing for Biofuels, Bioenergy and Chemicals
Authors: --- ---
ISBN: 3039289101 3039289098 Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Biomass can be used to produce renewable electricity, thermal energy, transportation fuels (biofuels), and high-value functional chemicals. As an energy source, biomass can be used either directly via combustion to produce heat or indirectly after it is converted to one of many forms of bioenergy and biofuel via thermochemical or biochemical pathways. The conversion of biomass can be achieved using various advanced methods, which are broadly classified into thermochemical conversion, biochemical conversion, electrochemical conversion, and so on. Advanced development technologies and processes are able to convert biomass into alternative energy sources in solid (e.g., charcoal, biochar, and RDF), liquid (biodiesel, algae biofuel, bioethanol, and pyrolysis and liquefaction bio-oils), and gaseous (e.g., biogas, syngas, and biohydrogen) forms. Because of the merits of biomass energy for environmental sustainability, biofuel and bioenergy technologies play a crucial role in renewable energy development and the replacement of chemicals by highly functional biomass. This book provides a comprehensive overview and in-depth technical research addressing recent progress in biomass conversion processes. It also covers studies on advanced techniques and methods for bioenergy and biofuel production.

Keywords

oxidation stability --- power density --- lipids --- pre-treatment --- dark fermentation --- hydrodeoxygenation --- combustion characteristics --- hydrogen --- feed solution --- emission --- cow manure --- anaerobic digestion --- synergistic effect --- biodiesel --- thermophilic --- mesophilic --- antioxidant --- crude oil --- biofuel --- rice husk --- base-catalyzed transesterification --- enzymatic digestibility --- fatty acid methyl ester --- coffee mucilage --- osmotic membrane --- fermentation --- forward osmosis --- Fourier transform infrared spectroscopy --- lignocellulose --- dimethyl carbonate --- diesel --- triacylglycerides --- drop-in fuel --- draw solution --- subcritical methanol --- free fatty acids --- Rhus typhina biodiesel --- sewage sludge --- alternative fuel --- vacuum --- intake temperature --- Physico-chemical properties --- bioethanol --- energy yield --- tert-butylhydroquinone --- non-edible oil --- biomass --- nano-catalysts --- Fatty Acid Methyl Ester --- bioenergy --- direct carbon fuel cell --- viscosity --- FAME yield --- reaction kinetics --- gasification --- operating conditions --- injection strategies --- instar --- butylated hydroxyanisole --- torrefaction --- nanomagnetic catalyst --- fatty acid methyl esters --- crude glycerol --- renewable energy --- pyrolysis --- glycerol carbonate --- single-pellet combustion --- biodiesel production --- nanotechnology --- microwave irradiation --- pressure-retarded osmosis --- black soldier fly larvae (BSFL) --- technology development --- concentration polarization --- waste --- nano-additives --- bio-jet fuel --- kinetic study --- thermogravimetric analysis --- rubber seed oil --- combustion --- potato peels --- power generation --- response surface --- biochar --- lipid --- organic wastes --- extrusion --- co-combustion --- biomass pretreatment --- microwave --- hardwood --- Rancimat method --- anaerobic treatment --- post-treatment --- fatty acid methyl ester (FAME) --- biogas --- GCI --- compression ratio --- membrane fouling --- environment --- rice straw --- pretreatment --- free fatty acid --- palm oil mill effluent --- acclimatization --- Box-Behnken design


Book
Sustainable Pavement Engineering and Road Materials
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In a similar way to many other engineering fields, the road pavement industry strongly affects the critical issues of our generation, including climate change, pollutant emission, the exploitation of natural resources and economic crises. For this reason, technicians and researchers are searching ravenously for sustainable solutions to implement in current road construction systems with the following goals: To reduce the consumption of energy and virgin materials; To run environmentally and economically friendly maintenance; To recycle waste from different industrial processes; To decrease the noise, the pollution and the heat generated by traffic, particularly in urban contexts. This Special Issue aims to collect high-quality studies that combine the aforementioned solutions, including works pertaining to: The hot, warm, and cold recycling of reclaimed asphalt pavement; Marginal materials for asphalt pavements; Innovative sustainable materials; Durability and environmental aspects; Structure performance, modeling and design; Advanced trends in rehabilitation and preservation; Surface characteristics and road safety; Management system/life cycle analysis; Urban heat island mitigation; Energy harvesting.

Keywords

Technology: general issues --- History of engineering & technology --- porous concrete --- metakaolin --- geopolymers --- permeable pavements --- urban drainage systems --- maintenance --- reinforced asphalt pavement --- geogrid --- interlayer bonding --- static shear test --- cyclic shear test --- fatigue properties --- warm mix asphalt --- natural zeolite --- gas emissions --- energy consumption --- production costs --- bituminous mixtures --- nano-additives --- nanoclay --- carbon nanotubes --- graphene nanoplatelets --- nano-calcium oxide --- nano-titanium dioxide --- sonication --- fatigue performance --- self-healing --- hot-mix asphalt --- ageing --- cooling --- temperature segregation --- hauling --- insulated truck --- re-heating --- contact stresses --- rolling resistance --- braking --- free rolling --- load --- inflation pressure --- speed --- porosity --- permeability coefficients --- mixing ratio --- aggregate size --- compressive strength --- computed tomography (CT) image --- ex-post CBA --- road modernisation --- incidence of traffic accidents --- decision-making process --- life cycle assessment --- waste management --- circular economy --- alternative materials --- construction --- road stabilisation --- bearing capacity --- unbound base course --- cold central-plant recycled base course --- falling weight deflectometer (FWD), cold recycling in-plant --- bitumen --- aging --- rejuvenation --- reclaimed asphalt --- recycling --- coal bottom ash --- waste material --- recycle --- construction industry --- civil engineering --- bitumen selection --- performance-graded bitumen --- asphalt pavement temperatures --- temperature maps --- n/a

Listing 1 - 4 of 4
Sort by