Listing 1 - 3 of 3 |
Sort by
|
Choose an application
This Special Issue collects novel contributions from scientists in the interdisciplinary field of biomolecular evolution. Works listed here use information theoretical concepts as a core but are tightly integrated with the study of molecular processes. Applications include the analysis of phylogenetic signals to elucidate biomolecular structure and function, the study and quantification of structural dynamics and allostery, as well as models of molecular interaction specificity inspired by evolutionary cues.
Research & information: general --- Biology, life sciences --- power law --- Brownian process --- Kolmogorov complexity --- entropy --- chaos --- monofractal --- non-linear --- cumulative sum --- sequence analysis --- protein engineering --- direct coupling analysis --- evolutionary coupling analysis --- contact prediction --- phylogenetic bias --- phylogeny --- co-evolution --- coevolutionary analysis --- direct-coupling analysis --- specificity determining contacts --- sequence reweighting --- maximum entropy models --- protein contact predictions --- TEM-1 --- TOHO-1 --- PBP-A --- DD-transpeptidase --- conformational changes --- catalytic mechanism --- evolution --- epistasis --- allostery --- elastic network model --- protein conformational dynamics --- statistical inference --- mutational phenotypes --- interaction specificity --- phosphorylation --- fitness landscape --- bacterial signaling --- power law --- Brownian process --- Kolmogorov complexity --- entropy --- chaos --- monofractal --- non-linear --- cumulative sum --- sequence analysis --- protein engineering --- direct coupling analysis --- evolutionary coupling analysis --- contact prediction --- phylogenetic bias --- phylogeny --- co-evolution --- coevolutionary analysis --- direct-coupling analysis --- specificity determining contacts --- sequence reweighting --- maximum entropy models --- protein contact predictions --- TEM-1 --- TOHO-1 --- PBP-A --- DD-transpeptidase --- conformational changes --- catalytic mechanism --- evolution --- epistasis --- allostery --- elastic network model --- protein conformational dynamics --- statistical inference --- mutational phenotypes --- interaction specificity --- phosphorylation --- fitness landscape --- bacterial signaling
Choose an application
This Special Issue collects novel contributions from scientists in the interdisciplinary field of biomolecular evolution. Works listed here use information theoretical concepts as a core but are tightly integrated with the study of molecular processes. Applications include the analysis of phylogenetic signals to elucidate biomolecular structure and function, the study and quantification of structural dynamics and allostery, as well as models of molecular interaction specificity inspired by evolutionary cues.
power law --- Brownian process --- Kolmogorov complexity --- entropy --- chaos --- monofractal --- non-linear --- cumulative sum --- sequence analysis --- protein engineering --- direct coupling analysis --- evolutionary coupling analysis --- contact prediction --- phylogenetic bias --- phylogeny --- co-evolution --- coevolutionary analysis --- direct-coupling analysis --- specificity determining contacts --- sequence reweighting --- maximum entropy models --- protein contact predictions --- TEM-1 --- TOHO-1 --- PBP-A --- DD-transpeptidase --- conformational changes --- catalytic mechanism --- evolution --- epistasis --- allostery --- elastic network model --- protein conformational dynamics --- statistical inference --- mutational phenotypes --- interaction specificity --- phosphorylation --- fitness landscape --- bacterial signaling --- n/a
Choose an application
This Special Issue collects novel contributions from scientists in the interdisciplinary field of biomolecular evolution. Works listed here use information theoretical concepts as a core but are tightly integrated with the study of molecular processes. Applications include the analysis of phylogenetic signals to elucidate biomolecular structure and function, the study and quantification of structural dynamics and allostery, as well as models of molecular interaction specificity inspired by evolutionary cues.
Research & information: general --- Biology, life sciences --- power law --- Brownian process --- Kolmogorov complexity --- entropy --- chaos --- monofractal --- non-linear --- cumulative sum --- sequence analysis --- protein engineering --- direct coupling analysis --- evolutionary coupling analysis --- contact prediction --- phylogenetic bias --- phylogeny --- co-evolution --- coevolutionary analysis --- direct-coupling analysis --- specificity determining contacts --- sequence reweighting --- maximum entropy models --- protein contact predictions --- TEM-1 --- TOHO-1 --- PBP-A --- DD-transpeptidase --- conformational changes --- catalytic mechanism --- evolution --- epistasis --- allostery --- elastic network model --- protein conformational dynamics --- statistical inference --- mutational phenotypes --- interaction specificity --- phosphorylation --- fitness landscape --- bacterial signaling --- n/a
Listing 1 - 3 of 3 |
Sort by
|