Listing 1 - 5 of 5 |
Sort by
|
Choose an application
The maintenance of optimal musculoskeletal health is increasingly recognized as a key element for promoting overall health and fostering independent living in advanced age. Growing evidence indicates that nutrition, together with an active lifestyle, plays a central role in supporting musculoskeletal health both aging and in the setting of specific disease conditions. This Special Issue of Nutrients, entitled “Nutrition for Musculoskeletal Health”, includes original research and review contributions highlighting the relevance of nutrition to musculoskeletal health during aging and in the context of specific diseases. The overarching theme of the Special Issue is addressed through a multidisciplinary set of articles embracing clinical, basic science, and translational studies.
lactate --- skeletal muscle --- hypertrophy --- regeneration --- muscle satellite cell --- amino acids intake --- essential amino acids --- diet --- extended lifespan --- mice --- bone metabolism --- bone mineral density --- bone remodelling --- citrate supplement --- osteopenia --- osteoporosis --- kidney diseases --- amyotrophic lateral sclerosis --- Hochu-ekki-to --- herbal medicine --- muscle dysfunction --- motor neuronal cell death --- sarcopenia --- EWGSOP2 --- malnutrition --- GLIM --- SarcoPhAge --- nutrition --- oral health --- older people --- swallowing --- life course approach --- muscle wasting --- exercise --- kidney disease --- aging --- muscle --- amino acids --- metabolism --- systemic inflammation --- profiling --- biomarkers --- multi-marker --- physical performance --- gut microbiota --- metabolomics --- systems biology --- personalized medicine --- frailty --- precision medicine --- metabolic profiling --- weight loss --- intermittent fasting --- fat loss --- body composition
Choose an application
The maintenance of optimal musculoskeletal health is increasingly recognized as a key element for promoting overall health and fostering independent living in advanced age. Growing evidence indicates that nutrition, together with an active lifestyle, plays a central role in supporting musculoskeletal health both aging and in the setting of specific disease conditions. This Special Issue of Nutrients, entitled “Nutrition for Musculoskeletal Health”, includes original research and review contributions highlighting the relevance of nutrition to musculoskeletal health during aging and in the context of specific diseases. The overarching theme of the Special Issue is addressed through a multidisciplinary set of articles embracing clinical, basic science, and translational studies.
Research & information: general --- Biology, life sciences --- Food & society --- lactate --- skeletal muscle --- hypertrophy --- regeneration --- muscle satellite cell --- amino acids intake --- essential amino acids --- diet --- extended lifespan --- mice --- bone metabolism --- bone mineral density --- bone remodelling --- citrate supplement --- osteopenia --- osteoporosis --- kidney diseases --- amyotrophic lateral sclerosis --- Hochu-ekki-to --- herbal medicine --- muscle dysfunction --- motor neuronal cell death --- sarcopenia --- EWGSOP2 --- malnutrition --- GLIM --- SarcoPhAge --- nutrition --- oral health --- older people --- swallowing --- life course approach --- muscle wasting --- exercise --- kidney disease --- aging --- muscle --- amino acids --- metabolism --- systemic inflammation --- profiling --- biomarkers --- multi-marker --- physical performance --- gut microbiota --- metabolomics --- systems biology --- personalized medicine --- frailty --- precision medicine --- metabolic profiling --- weight loss --- intermittent fasting --- fat loss --- body composition
Choose an application
The book is a collection of original research and review articles addressing the intriguing field of the cellular and molecular players involved in muscle homeostasis and regeneration. One of the most ambitious aspirations of modern medical science is the possibility of regenerating any damaged part of the body, including skeletal muscle. This desire has prompted clinicians and researchers to search for innovative technologies aimed at replacing organs and tissues that are compromised. In this context, the papers, collected in this book, addressing a specific aspects of muscle homeostasis and regeneration under physiopathologic conditions, will help us to better understand the underlying mechanisms of muscle healing and will help to design more appropriate therapeutic approaches to improve muscle regeneration and to counteract muscle diseases.
Research & information: general --- Biology, life sciences --- lysine --- mTORC1 --- satellite cells --- proliferation --- skeletal muscle growth --- muscle satellite cell --- transthyretin --- thyroid hormone --- myogenesis --- exosomes --- skeletal muscle --- genotype --- genetic variation --- muscle phenotypes --- sarcopenia --- aging --- calcium homeostasis --- hibernation --- mitochondria --- sarcoplasmic reticulum --- Acvr1b --- Tgfbr1 --- myostatin --- Col1a1 --- fibrosis --- atrophy --- IGF2R --- muscle homeostasis --- inflammation --- muscular dystrophy --- pericytes --- macrophages --- Nfix --- phagocytosis --- RhoA-ROCK1 --- splicing isoforms --- CRISPR-Cas9 --- exon deletion --- NF-Y --- muscle differentiation --- C2C12 cells --- denervation --- neuromuscular junction --- heavy resistance exercise --- acetylcholine receptor --- cell culture --- neonatal myosin --- neural cell adhesion molecule --- biomarkers --- mitophagy --- mitochondrial dynamics --- mitochondrial quality control --- mitochondrial-derived vesicles (MDVs) --- mitochondrial-lysosomal axis --- Hibernation --- electron microscopy --- immunocytochemistry --- α-smooth muscle actin --- confocal microscopy --- connexin 43 --- connexin 26 --- gap junctions --- myofibroblasts --- Platelet-Rich Plasma --- transforming growth factor (TGF)-β1 --- muscle regeneration --- inflammatory response --- cell precursors --- experimental methods --- stem cell markers --- muscles --- heterotopic ossification --- skeletal muscle stem and progenitor cells --- HO precursors --- muscle atrophy --- septicemia --- mitochondrial fusion --- mitochondrial fission --- iPSC --- extracellular vesicles --- Drosophila --- muscle --- genetic control --- muscle diversification --- fascicle --- myofiber --- myofibril --- sarcomere --- hypertrophy --- hyperplasia --- splitting --- radial growth --- longitudinal growth --- exercise --- muscle stem cells --- stem cells niche --- neuromuscular disorders --- Duchenne muscular dystrophy --- pharmacological approach --- single-cell --- mass cytometry --- skeletal muscle regeneration --- skeletal muscle homeostasis --- fibro/adipogenic progenitors --- myogenic progenitors --- muscle populations --- evolution --- metazoans --- differentiation --- transdifferentiation --- muscle precursors --- regenerative medicine --- stem cells --- FAPs --- tissue niche --- growth factors --- muscle pathology
Choose an application
The book is a collection of original research and review articles addressing the intriguing field of the cellular and molecular players involved in muscle homeostasis and regeneration. One of the most ambitious aspirations of modern medical science is the possibility of regenerating any damaged part of the body, including skeletal muscle. This desire has prompted clinicians and researchers to search for innovative technologies aimed at replacing organs and tissues that are compromised. In this context, the papers, collected in this book, addressing a specific aspects of muscle homeostasis and regeneration under physiopathologic conditions, will help us to better understand the underlying mechanisms of muscle healing and will help to design more appropriate therapeutic approaches to improve muscle regeneration and to counteract muscle diseases.
lysine --- mTORC1 --- satellite cells --- proliferation --- skeletal muscle growth --- muscle satellite cell --- transthyretin --- thyroid hormone --- myogenesis --- exosomes --- skeletal muscle --- genotype --- genetic variation --- muscle phenotypes --- sarcopenia --- aging --- calcium homeostasis --- hibernation --- mitochondria --- sarcoplasmic reticulum --- Acvr1b --- Tgfbr1 --- myostatin --- Col1a1 --- fibrosis --- atrophy --- IGF2R --- muscle homeostasis --- inflammation --- muscular dystrophy --- pericytes --- macrophages --- Nfix --- phagocytosis --- RhoA-ROCK1 --- splicing isoforms --- CRISPR-Cas9 --- exon deletion --- NF-Y --- muscle differentiation --- C2C12 cells --- denervation --- neuromuscular junction --- heavy resistance exercise --- acetylcholine receptor --- cell culture --- neonatal myosin --- neural cell adhesion molecule --- biomarkers --- mitophagy --- mitochondrial dynamics --- mitochondrial quality control --- mitochondrial-derived vesicles (MDVs) --- mitochondrial-lysosomal axis --- Hibernation --- electron microscopy --- immunocytochemistry --- α-smooth muscle actin --- confocal microscopy --- connexin 43 --- connexin 26 --- gap junctions --- myofibroblasts --- Platelet-Rich Plasma --- transforming growth factor (TGF)-β1 --- muscle regeneration --- inflammatory response --- cell precursors --- experimental methods --- stem cell markers --- muscles --- heterotopic ossification --- skeletal muscle stem and progenitor cells --- HO precursors --- muscle atrophy --- septicemia --- mitochondrial fusion --- mitochondrial fission --- iPSC --- extracellular vesicles --- Drosophila --- muscle --- genetic control --- muscle diversification --- fascicle --- myofiber --- myofibril --- sarcomere --- hypertrophy --- hyperplasia --- splitting --- radial growth --- longitudinal growth --- exercise --- muscle stem cells --- stem cells niche --- neuromuscular disorders --- Duchenne muscular dystrophy --- pharmacological approach --- single-cell --- mass cytometry --- skeletal muscle regeneration --- skeletal muscle homeostasis --- fibro/adipogenic progenitors --- myogenic progenitors --- muscle populations --- evolution --- metazoans --- differentiation --- transdifferentiation --- muscle precursors --- regenerative medicine --- stem cells --- FAPs --- tissue niche --- growth factors --- muscle pathology
Choose an application
The book is a collection of original research and review articles addressing the intriguing field of the cellular and molecular players involved in muscle homeostasis and regeneration. One of the most ambitious aspirations of modern medical science is the possibility of regenerating any damaged part of the body, including skeletal muscle. This desire has prompted clinicians and researchers to search for innovative technologies aimed at replacing organs and tissues that are compromised. In this context, the papers, collected in this book, addressing a specific aspects of muscle homeostasis and regeneration under physiopathologic conditions, will help us to better understand the underlying mechanisms of muscle healing and will help to design more appropriate therapeutic approaches to improve muscle regeneration and to counteract muscle diseases.
Research & information: general --- Biology, life sciences --- lysine --- mTORC1 --- satellite cells --- proliferation --- skeletal muscle growth --- muscle satellite cell --- transthyretin --- thyroid hormone --- myogenesis --- exosomes --- skeletal muscle --- genotype --- genetic variation --- muscle phenotypes --- sarcopenia --- aging --- calcium homeostasis --- hibernation --- mitochondria --- sarcoplasmic reticulum --- Acvr1b --- Tgfbr1 --- myostatin --- Col1a1 --- fibrosis --- atrophy --- IGF2R --- muscle homeostasis --- inflammation --- muscular dystrophy --- pericytes --- macrophages --- Nfix --- phagocytosis --- RhoA-ROCK1 --- splicing isoforms --- CRISPR-Cas9 --- exon deletion --- NF-Y --- muscle differentiation --- C2C12 cells --- denervation --- neuromuscular junction --- heavy resistance exercise --- acetylcholine receptor --- cell culture --- neonatal myosin --- neural cell adhesion molecule --- biomarkers --- mitophagy --- mitochondrial dynamics --- mitochondrial quality control --- mitochondrial-derived vesicles (MDVs) --- mitochondrial-lysosomal axis --- Hibernation --- electron microscopy --- immunocytochemistry --- α-smooth muscle actin --- confocal microscopy --- connexin 43 --- connexin 26 --- gap junctions --- myofibroblasts --- Platelet-Rich Plasma --- transforming growth factor (TGF)-β1 --- muscle regeneration --- inflammatory response --- cell precursors --- experimental methods --- stem cell markers --- muscles --- heterotopic ossification --- skeletal muscle stem and progenitor cells --- HO precursors --- muscle atrophy --- septicemia --- mitochondrial fusion --- mitochondrial fission --- iPSC --- extracellular vesicles --- Drosophila --- muscle --- genetic control --- muscle diversification --- fascicle --- myofiber --- myofibril --- sarcomere --- hypertrophy --- hyperplasia --- splitting --- radial growth --- longitudinal growth --- exercise --- muscle stem cells --- stem cells niche --- neuromuscular disorders --- Duchenne muscular dystrophy --- pharmacological approach --- single-cell --- mass cytometry --- skeletal muscle regeneration --- skeletal muscle homeostasis --- fibro/adipogenic progenitors --- myogenic progenitors --- muscle populations --- evolution --- metazoans --- differentiation --- transdifferentiation --- muscle precursors --- regenerative medicine --- stem cells --- FAPs --- tissue niche --- growth factors --- muscle pathology
Listing 1 - 5 of 5 |
Sort by
|