Listing 1 - 4 of 4 |
Sort by
|
Choose an application
Power converters have progressively become the most efficient and attractive solution in recent decades in many industrial sectors, ranging from electric mobility, aerospace applications to attain better electric aircraft concepts, vast renewable energy resource integration in the transmission and distribution grid, the design of smart and efficient energy management systems, the usage of energy storage systems, and the achievement of smart grid paradigm development, among others.In order to achieve efficient solutions in this wide energy scenario, over the past few decades, considerable attention has been paid by the academia and industry in order to develop new methods to achieve power systems with maximum harmonic performance aiming for two main targets. On the one hand, the high-performance harmonic performance of power systems would lead to improvements in their power density, size and weight. This becomes critical in applications such as aerospace or electric mobility, where the power converters are on-board systems. On the other hand, current standards are becoming more and more strict in order to reduce the EMI and EMC noise, as well as meeting minimum power quality requirements (i.e., grid code standards for grid-tied power systems).
multiphase drives --- pulse width modulation --- current harmonics --- effective voltage regulation --- generalized delayed signal cancellation --- harmonic distortion --- power quality --- repetitive controller --- harmonic analysis --- power converters --- pulse-width modulation (PWM) --- frequency-domain model --- voltage-source inverter (VSI) --- closed-loop control --- full electric aircraft (FEA) --- cascaded H-bridge (CHB) --- multi-level inverter --- permanent magnet synchronous motor (PMSM) --- total harmonic distortion (THD) --- pulse-width modulation --- metaheuristic search algorithms
Choose an application
Power converters have progressively become the most efficient and attractive solution in recent decades in many industrial sectors, ranging from electric mobility, aerospace applications to attain better electric aircraft concepts, vast renewable energy resource integration in the transmission and distribution grid, the design of smart and efficient energy management systems, the usage of energy storage systems, and the achievement of smart grid paradigm development, among others.In order to achieve efficient solutions in this wide energy scenario, over the past few decades, considerable attention has been paid by the academia and industry in order to develop new methods to achieve power systems with maximum harmonic performance aiming for two main targets. On the one hand, the high-performance harmonic performance of power systems would lead to improvements in their power density, size and weight. This becomes critical in applications such as aerospace or electric mobility, where the power converters are on-board systems. On the other hand, current standards are becoming more and more strict in order to reduce the EMI and EMC noise, as well as meeting minimum power quality requirements (i.e., grid code standards for grid-tied power systems).
Technology: general issues --- Energy industries & utilities --- multiphase drives --- pulse width modulation --- current harmonics --- effective voltage regulation --- generalized delayed signal cancellation --- harmonic distortion --- power quality --- repetitive controller --- harmonic analysis --- power converters --- pulse-width modulation (PWM) --- frequency-domain model --- voltage-source inverter (VSI) --- closed-loop control --- full electric aircraft (FEA) --- cascaded H-bridge (CHB) --- multi-level inverter --- permanent magnet synchronous motor (PMSM) --- total harmonic distortion (THD) --- pulse-width modulation --- metaheuristic search algorithms --- multiphase drives --- pulse width modulation --- current harmonics --- effective voltage regulation --- generalized delayed signal cancellation --- harmonic distortion --- power quality --- repetitive controller --- harmonic analysis --- power converters --- pulse-width modulation (PWM) --- frequency-domain model --- voltage-source inverter (VSI) --- closed-loop control --- full electric aircraft (FEA) --- cascaded H-bridge (CHB) --- multi-level inverter --- permanent magnet synchronous motor (PMSM) --- total harmonic distortion (THD) --- pulse-width modulation --- metaheuristic search algorithms
Choose an application
With the growing interest in electrical machines in recent times, the multiphase machine field has developed into a fascinating research area. Their intrinsic features (power splitting, better fault tolerance, or lower torque ripple) make them an appealing competitor to conventional three-phase machines. Multiphase electric drives have been recently used in applications where fault tolerance and continuous operation of the drive are required. However, the difficulties in extending the three-phase conventional current regulation and control structure to multiphase systems still limit their broad applicability in industry solutions. The main objective of this book is to illustrate new advances, developments, and applications in the field of multiphase machines and drives, while exposing these advances, developments, and applications to the scientific community and industry.
model predictive control --- sliding mode control --- multiphase induction motor drives --- multiphase induction machine --- winding configuration --- observer --- meta-heuristic algorithms --- cost functions --- off-line identification methods --- constraints satisfaction --- multiphase drives --- multi-phase drives --- natural fault tolerance --- current control --- variable sampling --- harmonic distortion --- minmax --- electric drives --- field-oriented control --- time delay estimation --- predictive current control --- modelling --- pulse width modulation --- multiphase induction machines --- fixed switching frequency --- local controllers --- current ripple --- dc-ac power converters --- virtual voltage vectors --- high-frequency losses
Choose an application
Power converters have progressively become the most efficient and attractive solution in recent decades in many industrial sectors, ranging from electric mobility, aerospace applications to attain better electric aircraft concepts, vast renewable energy resource integration in the transmission and distribution grid, the design of smart and efficient energy management systems, the usage of energy storage systems, and the achievement of smart grid paradigm development, among others.In order to achieve efficient solutions in this wide energy scenario, over the past few decades, considerable attention has been paid by the academia and industry in order to develop new methods to achieve power systems with maximum harmonic performance aiming for two main targets. On the one hand, the high-performance harmonic performance of power systems would lead to improvements in their power density, size and weight. This becomes critical in applications such as aerospace or electric mobility, where the power converters are on-board systems. On the other hand, current standards are becoming more and more strict in order to reduce the EMI and EMC noise, as well as meeting minimum power quality requirements (i.e., grid code standards for grid-tied power systems).
Technology: general issues --- Energy industries & utilities --- multiphase drives --- pulse width modulation --- current harmonics --- effective voltage regulation --- generalized delayed signal cancellation --- harmonic distortion --- power quality --- repetitive controller --- harmonic analysis --- power converters --- pulse-width modulation (PWM) --- frequency-domain model --- voltage-source inverter (VSI) --- closed-loop control --- full electric aircraft (FEA) --- cascaded H-bridge (CHB) --- multi-level inverter --- permanent magnet synchronous motor (PMSM) --- total harmonic distortion (THD) --- pulse-width modulation --- metaheuristic search algorithms
Listing 1 - 4 of 4 |
Sort by
|