Listing 1 - 6 of 6 |
Sort by
|
Choose an application
Bacterial resistance to known and currently used antibiotics represents a growing issue worldwide. It poses a major problem in the treatment of infectious diseases in general and hospital-acquired infections in particular. This is in part due to the overuse and misuse of antibiotics in past decades, which led to the selection of highly resistant bacteria and even so-called superbugs – multidrug-resistant (MDR) bacteria. Nosocomial infections, particularly, are often caused by MDR bacterial pathogens and the treatment of such infections is very complicated and extensive, often leading to various side effects, including adverse effects on the natural human microbiome. At the same time, the development of novel antibiotics is lagging with very few new ones in the pipeline. Finding viable alternatives to treat such infections may help to overcome these therapeutic issues. This publication brings novel developments in the field of bacterial resistance, mainly in the hospital settings, adequate antibiotic therapy, and identification of compounds useful to battle this growing issue.
Medicine --- Epidemiology & medical statistics --- VRE --- GIT --- hemato-oncological patients --- clonality --- antibiotic stewardship --- resistance --- consumption of antibiotics --- clonal spread --- Enterococcus faecium --- Enterococcus faecalis --- linezolid resistance --- 23S rRNA --- optrA --- carbapenem-resistant Klebsiella pneumoniae --- carbapenem-resistant Acinetobacter baumannii --- N-acetylcysteine --- septic shock --- critically ill patients --- newborn --- infection --- bacteria --- antibiotic therapy --- hops --- C. difficile --- rat model --- Staphylococcus aureus --- MRSA --- spa typing --- MLST --- SCCmec typing --- clonal analysis --- epidemiology --- cancer patients --- duration of treatment --- colistin --- propensity score analysis --- multidrug-resistant Acinetobacter baumannii --- urinary tract infections --- UTIs --- MDR --- Escherichia coli --- Klebsiella --- uropathogens --- AMR --- antibiotic resistance --- ESBL-producing Klebsiella pneumoniae --- urinary tract infection --- clinical impact --- economic impact --- ventilator-associated pneumonia --- Klebsiella spp. --- Escherichia spp. --- pulsed-field gel electrophoresis (PFGE) --- endogenous infection --- methicillin-resistant --- porcine model --- methicillin-resistant Staphylococcus aureus (MRSA) --- long term care facilities (LTCF) --- multidrug resistance (MDR) --- enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) --- ESBL --- PCR --- primer --- antimicrobial resistance --- infection prevention and control --- antimicrobial stewardship --- hospital --- cluster analysis --- principal component analysis
Choose an application
Bacterial resistance to known and currently used antibiotics represents a growing issue worldwide. It poses a major problem in the treatment of infectious diseases in general and hospital-acquired infections in particular. This is in part due to the overuse and misuse of antibiotics in past decades, which led to the selection of highly resistant bacteria and even so-called superbugs – multidrug-resistant (MDR) bacteria. Nosocomial infections, particularly, are often caused by MDR bacterial pathogens and the treatment of such infections is very complicated and extensive, often leading to various side effects, including adverse effects on the natural human microbiome. At the same time, the development of novel antibiotics is lagging with very few new ones in the pipeline. Finding viable alternatives to treat such infections may help to overcome these therapeutic issues. This publication brings novel developments in the field of bacterial resistance, mainly in the hospital settings, adequate antibiotic therapy, and identification of compounds useful to battle this growing issue.
VRE --- GIT --- hemato-oncological patients --- clonality --- antibiotic stewardship --- resistance --- consumption of antibiotics --- clonal spread --- Enterococcus faecium --- Enterococcus faecalis --- linezolid resistance --- 23S rRNA --- optrA --- carbapenem-resistant Klebsiella pneumoniae --- carbapenem-resistant Acinetobacter baumannii --- N-acetylcysteine --- septic shock --- critically ill patients --- newborn --- infection --- bacteria --- antibiotic therapy --- hops --- C. difficile --- rat model --- Staphylococcus aureus --- MRSA --- spa typing --- MLST --- SCCmec typing --- clonal analysis --- epidemiology --- cancer patients --- duration of treatment --- colistin --- propensity score analysis --- multidrug-resistant Acinetobacter baumannii --- urinary tract infections --- UTIs --- MDR --- Escherichia coli --- Klebsiella --- uropathogens --- AMR --- antibiotic resistance --- ESBL-producing Klebsiella pneumoniae --- urinary tract infection --- clinical impact --- economic impact --- ventilator-associated pneumonia --- Klebsiella spp. --- Escherichia spp. --- pulsed-field gel electrophoresis (PFGE) --- endogenous infection --- methicillin-resistant --- porcine model --- methicillin-resistant Staphylococcus aureus (MRSA) --- long term care facilities (LTCF) --- multidrug resistance (MDR) --- enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) --- ESBL --- PCR --- primer --- antimicrobial resistance --- infection prevention and control --- antimicrobial stewardship --- hospital --- cluster analysis --- principal component analysis
Choose an application
Bacterial resistance to known and currently used antibiotics represents a growing issue worldwide. It poses a major problem in the treatment of infectious diseases in general and hospital-acquired infections in particular. This is in part due to the overuse and misuse of antibiotics in past decades, which led to the selection of highly resistant bacteria and even so-called superbugs – multidrug-resistant (MDR) bacteria. Nosocomial infections, particularly, are often caused by MDR bacterial pathogens and the treatment of such infections is very complicated and extensive, often leading to various side effects, including adverse effects on the natural human microbiome. At the same time, the development of novel antibiotics is lagging with very few new ones in the pipeline. Finding viable alternatives to treat such infections may help to overcome these therapeutic issues. This publication brings novel developments in the field of bacterial resistance, mainly in the hospital settings, adequate antibiotic therapy, and identification of compounds useful to battle this growing issue.
Medicine --- Epidemiology & medical statistics --- VRE --- GIT --- hemato-oncological patients --- clonality --- antibiotic stewardship --- resistance --- consumption of antibiotics --- clonal spread --- Enterococcus faecium --- Enterococcus faecalis --- linezolid resistance --- 23S rRNA --- optrA --- carbapenem-resistant Klebsiella pneumoniae --- carbapenem-resistant Acinetobacter baumannii --- N-acetylcysteine --- septic shock --- critically ill patients --- newborn --- infection --- bacteria --- antibiotic therapy --- hops --- C. difficile --- rat model --- Staphylococcus aureus --- MRSA --- spa typing --- MLST --- SCCmec typing --- clonal analysis --- epidemiology --- cancer patients --- duration of treatment --- colistin --- propensity score analysis --- multidrug-resistant Acinetobacter baumannii --- urinary tract infections --- UTIs --- MDR --- Escherichia coli --- Klebsiella --- uropathogens --- AMR --- antibiotic resistance --- ESBL-producing Klebsiella pneumoniae --- urinary tract infection --- clinical impact --- economic impact --- ventilator-associated pneumonia --- Klebsiella spp. --- Escherichia spp. --- pulsed-field gel electrophoresis (PFGE) --- endogenous infection --- methicillin-resistant --- porcine model --- methicillin-resistant Staphylococcus aureus (MRSA) --- long term care facilities (LTCF) --- multidrug resistance (MDR) --- enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) --- ESBL --- PCR --- primer --- antimicrobial resistance --- infection prevention and control --- antimicrobial stewardship --- hospital --- cluster analysis --- principal component analysis
Choose an application
This book is a printed edition of the Special Issue entitled “Anticancer Agents: Design, Synthesis and Evaluation” that was published in Molecules. Two review articles and thirty research papers are included in the Special Issue. Three second-generation androgen receptor antagonists that have been approved by the U.S. FDA for the treatment of prostate cancer have been reviewed. Identification of mimics of protein partners as protein-protein interaction inhibitors via virtual screening has been summarized and discussed. Anticancer agents targeting various protein targets, including IGF-1R, Src, protein kinase, aromatase, HDAC, PARP, Toll-Like receptor, c-Met, PI3Kdelta, topoisomerase II, p53, and indoleamine 2,3-dioxygenase, have been explored. The analogs of three well-known tubulin-interacting natural products, paclitaxel, zampanolide, and colchicine, have been designed, synthesized, and evaluated. Several anticancer agents representing diverse chemical scaffolds were assessed in different kinds of cancer cell models. The capability of some anticancer agents to overcome the resistance to currently available drugs was also studied. In addition to looking into the in vitro ability of the anticancer agents to inhibit cancer cell proliferation, apoptosis, and cell cycle, in vivo antitumor efficacy in animal models and DFT were also investigated in some papers.
Medicine --- benzofurans --- chemical synthesis --- cytotoxic properties --- HeLa --- MOLT-4 --- K562 --- anticancer --- anti-neuroinflammation --- coumarin --- dihydroartemisinin --- flavonoids --- allene --- E-stereoselective --- regioselective --- anti-cancer activity --- cyanopyridone --- substituted pyridine --- pyridotriazine --- pyrazolopyridine --- thioxotriazopyridine --- anticancer activity --- HepG2 --- antitumor activity --- computational docking --- MDM2-p53 interaction --- xanthones --- yeast-based assays --- estrone derivatives --- hydrazine --- N-substituted pyrazoline --- anti-ovarian cancer --- topoisomerase II inhibitor --- kinase inhibitor --- antiproliferative agent --- urea --- synthesis --- antiproliferative activity --- apoptosis --- indoleamine 2,3-dioxygenase --- inhibitor --- anti-tumor --- immune modulation --- tryptophan metabolism --- taxoids --- βIII-tubulin --- P-glycoprotein --- drug resistance --- thiopene --- thienopyrimidinone --- thiazolidinone --- breast cancer --- benzofuran–pyrazole --- nanoparticles --- cytotoxic activity --- PARP-1 inhibition --- 3,6-dibromocarbazole --- 5-bromoindole --- carbazole --- actin --- migration --- Thienopyrimidine --- Pyrazole --- PI3Kα inhibitor --- quinazolin-4(3H)-one --- quinazolin-4(3H)-thione --- Schiff base --- antioxidant activity --- DFT study --- ortho-quinones --- beta-lapachone --- tanshione IIA --- PI3Ks --- PI3Kδ inhibitors --- 2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide --- anticancer agents --- protein–protein interactions --- virtual screening --- mimetics --- drug discovery --- bivalency --- polyvalency --- antitumor --- cell cycle --- ovarian cancer --- P-MAPA --- IL-12 --- TLR signaling --- inflammation --- chemoresistance --- 4-(pyridin-4-yloxy)benzamide --- 1,2,3-triazole --- c-Met --- natural product --- anticancer agent --- zampanolide --- Talazoparib --- PARP inhibitor --- prodrug --- o-nitro-benzyl --- photoactivatable protecting groups --- salinomycin --- overcoming drug resistance --- tumor specificity --- synergy --- 5-fluorouracil --- gemcitabine --- amides/esters --- colchicine analogs --- thiocolchicine --- colchiceine --- antimitotic agents --- hydrates --- dihydropyranoindole --- HDAC inhibitors --- neuroblastoma --- aromatase --- MCF-7 --- NIH3T3 --- benzimidazole --- triazolothiadiazine --- docking --- ADME --- organosilicon compounds --- SILA-409 (Alis-409) --- SILA-421 (Alis-421) --- multidrug resistance (MDR) reversal --- ABCB1 (P-glycoprotein) --- colon cancer --- colchicine amide --- colchicine sulfonamide --- tubulin inhibitors --- docking studies --- crystal structure --- PROTACs --- protein degradation --- IGF-1R --- Src --- protein kinase --- phenylpyrazolopyrimidine --- enzyme inhibition --- molecular simulation --- androgen receptor --- prostate cancer --- enzalutamide --- apalutamide --- darolutamide --- triple-negative breast cancer --- cytotoxicity --- chrysin analogues --- flavonoid --- anticancer compounds
Choose an application
This book is a printed edition of the Special Issue entitled “Anticancer Agents: Design, Synthesis and Evaluation” that was published in Molecules. Two review articles and thirty research papers are included in the Special Issue. Three second-generation androgen receptor antagonists that have been approved by the U.S. FDA for the treatment of prostate cancer have been reviewed. Identification of mimics of protein partners as protein-protein interaction inhibitors via virtual screening has been summarized and discussed. Anticancer agents targeting various protein targets, including IGF-1R, Src, protein kinase, aromatase, HDAC, PARP, Toll-Like receptor, c-Met, PI3Kdelta, topoisomerase II, p53, and indoleamine 2,3-dioxygenase, have been explored. The analogs of three well-known tubulin-interacting natural products, paclitaxel, zampanolide, and colchicine, have been designed, synthesized, and evaluated. Several anticancer agents representing diverse chemical scaffolds were assessed in different kinds of cancer cell models. The capability of some anticancer agents to overcome the resistance to currently available drugs was also studied. In addition to looking into the in vitro ability of the anticancer agents to inhibit cancer cell proliferation, apoptosis, and cell cycle, in vivo antitumor efficacy in animal models and DFT were also investigated in some papers.
benzofurans --- chemical synthesis --- cytotoxic properties --- HeLa --- MOLT-4 --- K562 --- anticancer --- anti-neuroinflammation --- coumarin --- dihydroartemisinin --- flavonoids --- allene --- E-stereoselective --- regioselective --- anti-cancer activity --- cyanopyridone --- substituted pyridine --- pyridotriazine --- pyrazolopyridine --- thioxotriazopyridine --- anticancer activity --- HepG2 --- antitumor activity --- computational docking --- MDM2-p53 interaction --- xanthones --- yeast-based assays --- estrone derivatives --- hydrazine --- N-substituted pyrazoline --- anti-ovarian cancer --- topoisomerase II inhibitor --- kinase inhibitor --- antiproliferative agent --- urea --- synthesis --- antiproliferative activity --- apoptosis --- indoleamine 2,3-dioxygenase --- inhibitor --- anti-tumor --- immune modulation --- tryptophan metabolism --- taxoids --- βIII-tubulin --- P-glycoprotein --- drug resistance --- thiopene --- thienopyrimidinone --- thiazolidinone --- breast cancer --- benzofuran–pyrazole --- nanoparticles --- cytotoxic activity --- PARP-1 inhibition --- 3,6-dibromocarbazole --- 5-bromoindole --- carbazole --- actin --- migration --- Thienopyrimidine --- Pyrazole --- PI3Kα inhibitor --- quinazolin-4(3H)-one --- quinazolin-4(3H)-thione --- Schiff base --- antioxidant activity --- DFT study --- ortho-quinones --- beta-lapachone --- tanshione IIA --- PI3Ks --- PI3Kδ inhibitors --- 2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide --- anticancer agents --- protein–protein interactions --- virtual screening --- mimetics --- drug discovery --- bivalency --- polyvalency --- antitumor --- cell cycle --- ovarian cancer --- P-MAPA --- IL-12 --- TLR signaling --- inflammation --- chemoresistance --- 4-(pyridin-4-yloxy)benzamide --- 1,2,3-triazole --- c-Met --- natural product --- anticancer agent --- zampanolide --- Talazoparib --- PARP inhibitor --- prodrug --- o-nitro-benzyl --- photoactivatable protecting groups --- salinomycin --- overcoming drug resistance --- tumor specificity --- synergy --- 5-fluorouracil --- gemcitabine --- amides/esters --- colchicine analogs --- thiocolchicine --- colchiceine --- antimitotic agents --- hydrates --- dihydropyranoindole --- HDAC inhibitors --- neuroblastoma --- aromatase --- MCF-7 --- NIH3T3 --- benzimidazole --- triazolothiadiazine --- docking --- ADME --- organosilicon compounds --- SILA-409 (Alis-409) --- SILA-421 (Alis-421) --- multidrug resistance (MDR) reversal --- ABCB1 (P-glycoprotein) --- colon cancer --- colchicine amide --- colchicine sulfonamide --- tubulin inhibitors --- docking studies --- crystal structure --- PROTACs --- protein degradation --- IGF-1R --- Src --- protein kinase --- phenylpyrazolopyrimidine --- enzyme inhibition --- molecular simulation --- androgen receptor --- prostate cancer --- enzalutamide --- apalutamide --- darolutamide --- triple-negative breast cancer --- cytotoxicity --- chrysin analogues --- flavonoid --- anticancer compounds
Choose an application
This book is a printed edition of the Special Issue entitled “Anticancer Agents: Design, Synthesis and Evaluation” that was published in Molecules. Two review articles and thirty research papers are included in the Special Issue. Three second-generation androgen receptor antagonists that have been approved by the U.S. FDA for the treatment of prostate cancer have been reviewed. Identification of mimics of protein partners as protein-protein interaction inhibitors via virtual screening has been summarized and discussed. Anticancer agents targeting various protein targets, including IGF-1R, Src, protein kinase, aromatase, HDAC, PARP, Toll-Like receptor, c-Met, PI3Kdelta, topoisomerase II, p53, and indoleamine 2,3-dioxygenase, have been explored. The analogs of three well-known tubulin-interacting natural products, paclitaxel, zampanolide, and colchicine, have been designed, synthesized, and evaluated. Several anticancer agents representing diverse chemical scaffolds were assessed in different kinds of cancer cell models. The capability of some anticancer agents to overcome the resistance to currently available drugs was also studied. In addition to looking into the in vitro ability of the anticancer agents to inhibit cancer cell proliferation, apoptosis, and cell cycle, in vivo antitumor efficacy in animal models and DFT were also investigated in some papers.
Medicine --- benzofurans --- chemical synthesis --- cytotoxic properties --- HeLa --- MOLT-4 --- K562 --- anticancer --- anti-neuroinflammation --- coumarin --- dihydroartemisinin --- flavonoids --- allene --- E-stereoselective --- regioselective --- anti-cancer activity --- cyanopyridone --- substituted pyridine --- pyridotriazine --- pyrazolopyridine --- thioxotriazopyridine --- anticancer activity --- HepG2 --- antitumor activity --- computational docking --- MDM2-p53 interaction --- xanthones --- yeast-based assays --- estrone derivatives --- hydrazine --- N-substituted pyrazoline --- anti-ovarian cancer --- topoisomerase II inhibitor --- kinase inhibitor --- antiproliferative agent --- urea --- synthesis --- antiproliferative activity --- apoptosis --- indoleamine 2,3-dioxygenase --- inhibitor --- anti-tumor --- immune modulation --- tryptophan metabolism --- taxoids --- βIII-tubulin --- P-glycoprotein --- drug resistance --- thiopene --- thienopyrimidinone --- thiazolidinone --- breast cancer --- benzofuran–pyrazole --- nanoparticles --- cytotoxic activity --- PARP-1 inhibition --- 3,6-dibromocarbazole --- 5-bromoindole --- carbazole --- actin --- migration --- Thienopyrimidine --- Pyrazole --- PI3Kα inhibitor --- quinazolin-4(3H)-one --- quinazolin-4(3H)-thione --- Schiff base --- antioxidant activity --- DFT study --- ortho-quinones --- beta-lapachone --- tanshione IIA --- PI3Ks --- PI3Kδ inhibitors --- 2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide --- anticancer agents --- protein–protein interactions --- virtual screening --- mimetics --- drug discovery --- bivalency --- polyvalency --- antitumor --- cell cycle --- ovarian cancer --- P-MAPA --- IL-12 --- TLR signaling --- inflammation --- chemoresistance --- 4-(pyridin-4-yloxy)benzamide --- 1,2,3-triazole --- c-Met --- natural product --- anticancer agent --- zampanolide --- Talazoparib --- PARP inhibitor --- prodrug --- o-nitro-benzyl --- photoactivatable protecting groups --- salinomycin --- overcoming drug resistance --- tumor specificity --- synergy --- 5-fluorouracil --- gemcitabine --- amides/esters --- colchicine analogs --- thiocolchicine --- colchiceine --- antimitotic agents --- hydrates --- dihydropyranoindole --- HDAC inhibitors --- neuroblastoma --- aromatase --- MCF-7 --- NIH3T3 --- benzimidazole --- triazolothiadiazine --- docking --- ADME --- organosilicon compounds --- SILA-409 (Alis-409) --- SILA-421 (Alis-421) --- multidrug resistance (MDR) reversal --- ABCB1 (P-glycoprotein) --- colon cancer --- colchicine amide --- colchicine sulfonamide --- tubulin inhibitors --- docking studies --- crystal structure --- PROTACs --- protein degradation --- IGF-1R --- Src --- protein kinase --- phenylpyrazolopyrimidine --- enzyme inhibition --- molecular simulation --- androgen receptor --- prostate cancer --- enzalutamide --- apalutamide --- darolutamide --- triple-negative breast cancer --- cytotoxicity --- chrysin analogues --- flavonoid --- anticancer compounds
Listing 1 - 6 of 6 |
Sort by
|